
PDP-11 C Guide to PDP-11 C

Available tables:

● Contents (316 entries)

● Examples (29 entries)

● Figures (7 entries)

● Tables (24 entries)

● Index (887 entries)

Contents

(316 entries)

CONTENTS

● Title Page

● Copyright Page

● Preface

● 1 Developing PDP-11 C Programs

● 1.1 DCL Commands for Program Development

● 1.2 Creating a PDP-11 C Program

● 1.2.1 Using EDT

● 1.2.2 Using VAXTPU

● 1.2.3 Using KED

● 1.3 Compiling a PDP-11 C Program

● 1.3.1 The Compile Command

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (1 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 1.3.1.1 Compiling a Program on RSX Systems

● 1.3.1.2 Compiling a Program on RSTS/E Systems

● 1.3.1.3 Compiling a Program on RT-11 Systems

● 1.3.1.4 Compiling a Program on VMS Systems

● 1.3.2 Prompt Mode

● 1.3.3 Indirect Command Files

● 1.3.4 The PDP-11 C Command Qualifiers

● 1.3.5 Compiler Error Messages

● 1.3.6 Compiler Listings

● 1.4 Copying Files Among Target Environments

● 1.4.1 File Transfer (FIT) Program

● 1.4.2 File Transfer Utility (FLX)

● 1.4.3 VMS EXCHANGE Utility

● 1.5 Linking a PDP-11 C Program

● 1.5.1 Linking a Program on RSX Systems

● 1.5.2 Linking a Program on RSTS/E Systems

● 1.5.2.1 Invoking the RSX Task Builder on RSTS/E

● 1.5.2.2 Invoking the RT-11 Linker on RSTS/E

● 1.5.3 Linking a Program on RT-11 Systems

● 1.5.4 Linking a Program on VMS Systems

● 1.5.5 Task Builder Command-Line Elements

● 1.5.5.1 Creating CMD and ODL Files for Task Building

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (2 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 1.5.5.2 Command-Line Elements in CMD Files

● 1.5.5.3 Task Builder Qualifiers

● 1.5.6 Task Builder Error Messages

● 1.5.7 Storage Considerations

● 1.5.8 Library Usage

● 1.5.8.1 PDP-11 C Run-Time System Object Libraries

● 1.5.8.2 Using System Libraries

● 1.5.8.3 Creating User Libraries

● 1.5.8.4 Using the supervisor-mode Library

● 1.5.9 Overlays

● 1.6 Running a PDP-11 C Program

● 1.7 Debugging a PDP-11 C Program

● 2 Program Structure

● 2.1 C Programming Language Background

● 2.2 The PDP-11 C Programming Language

● 2.3 Writing a Program

● 2.4 Producing Input/Output

● 2.5 Controlling Program Flow

● 2.5.1 Testing for a Condition (if Statement)

● 2.5.2 Testing for Multiple Conditions (switch Statement)

● 2.5.3 Loops

● 2.6 Values, Addresses, and Pointers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (3 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 2.7 Function Definitions

● 2.7.1 Main Function and Function Identifiers

● 2.7.2 Parameter List Declarations

●

● 2.7.4 Variable-Length Parameter Lists

● 2.8 Function Declarations

● 2.8.1 Function Prototypes

● 2.9 Using Parameters and Arguments

● 2.9.1 Function and Array Identifiers as Arguments

● 2.9.2 Passing Arguments to the Function Main

● 2.10 Identifiers

● 2.11 Keywords

● 2.12 Blocks

● 2.13 Comments

● 2.14 Lexical Continuation

● 2.15 String Literal Concatenation

● 2.16 Trigraphs

● 3 Statements

● 3.1 The Labeled Statement

● 3.2 Compound Statement

● 3.3 The Null Statement

● 3.4 The Expression Statement

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (4 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 3.5 Selection Statements

● 3.5.1 The if Conditional Statement

● 3.5.2 The switch Statement

● 3.6 Iteration Statements (Looping)

● 3.6.1 The while Statement

● 3.6.2 The for Statement

● 3.6.3 The do Statement

● 3.7 Jump Statements

● 3.7.1 The goto Statement

● 3.7.2 The continue Statement

● 3.7.3 The break Statement

● 3.7.4 The return Statement

● 4 Expressions and Operators

● 4.1 Addresses (lvalues) and Objects (rvalues) of Variables

● 4.2 Overview of the PDP-11 C Operators

● 4.3 Primary Expressions and Operators

● 4.3.1 Parenthetical Expressions

● 4.3.2 Function Calls

● 4.3.3 Array References

● 4.3.4 Structure and Union References

● 4.4 Unary Operators

● 4.4.1 Negating Arithmetic and Logical Expressions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (5 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 4.4.2 Incrementing and Decrementing Variables

● 4.4.3 Computing Addresses and Dereferencing Pointers (& *)

● 4.4.4 Calculating a One's Complement (~)

● 4.4.5 Forcing Conversions to a Specific Type (Cast Operator)

● 4.4.6 Calculating Sizes of Variables and Data Types (sizeof)

● 4.5 Binary Operators

● 4.5.1 Additive Operators (+ -)

● 4.5.2 Multiplication Operators (* / %)

● 4.5.3 Equality Operators (= = !=)

● 4.5.4 Relational Operators (< > <= >=)

● 4.5.5 Bitwise Operators (& | ^)

● 4.5.6 Logical Operators (&& | |)

● 4.5.7 Shift Operators (<< >>)

● 4.6 Conditional Operator (?:)

● 4.7 Assignment Expressions and Operators

● 4.8 Comma Expression and Operator (,)

● 4.9 Data Type Conversions

● 4.9.1 Converting Operands

● 4.9.2 Converting Function Arguments

● 5 Data Types and Declarations

● 5.1 Constants

● 5.2 Variables

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (6 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 5.2.1 Classification of Variables

● 5.2.1.1 Data Type Keywords

● 5.2.1.2 Format of a Variable Declaration

● 5.3 Integers (int, long, short, char, signed, unsigned)

● 5.3.1 Integer Constants

● 5.3.2 Character Constants

● 5.3.3 Escape Sequences

●

● 5.5 Pointers

● 5.6 Enumerated Types (enum)

● 5.7 Arrays ([])

● 5.7.1 Initialization of Arrays

● 5.8 Character-String Variables and Constants (char * , char[])

● 5.9 Structures and Unions (struct, union)

● 5.9.1 Declaring a Structure or Union

● 5.9.2 Referencing Members of Structures or Unions

● 5.9.3 Initialization of Structures and Unions

● 5.9.4 Variant Structures and Unions

● 5.9.5 Bit-Fields

● 5.10 Aggregates

● 5.10.1 Arrays and Character Strings

● 5.10.2 Structures and Unions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (7 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 5.11 The void Keyword

● 5.12 The typedef Keyword

● 5.13 Interpreting Declarations

● 6 Scope, Storage Classes, and Allocation

● 6.1 The Scope of an Identifier

● 6.1.1 The Compilation and Linking Process

● 6.1.2 Position of the Declaration

● 6.1.3 Lexical Scope and Link-Time Scope

● 6.1.4 Program Example

● 6.2 Storage Allocation

● 6.3 Internal Storage Class

● 6.3.1 Defining a Variable for Automatic Storage Allocation (auto)

● 6.3.2 Defining a Variable for Placement in a Machine Register (register)

● 6.4 Static Storage Class

● 6.5 Global Storage Class

● 6.5.1 Global Names on PDP-11 Systems

● 6.5.2 Global Definitions

● 6.6 Defining Global Definitions (globaldef) and References (globalref)

● 6.7 Defining Global Values (globalvalue)

● 6.8 Explicit psect Control

● 6.8.1 Reducing Storage Requirements in Overlaid Tasks

● 6.8.2 Data Sharing Using psects

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (8 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 6.9 Data Type Qualifiers

● 6.9.1 The const Qualifier

● 6.9.2 The volatile Qualifier

● 6.10 Storage-Class Specifiers

● 7 Preprocessor Directives

● 7.1 Token Definitions (#define, #undef)

● 7.1.1 Object-Like Macros

● 7.1.2 Canceling Definitions (#undef)

● 7.1.3 Function-Like Macros

● 7.1.3.1 Stringizing Preprocessing Operator (#)

● 7.1.3.2 Token Concatenation Preprocessing Operator (##)

● 7.1.4 Listing Substituted Lines

● 7.2 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, #endif)

● 7.2.1 The defined Operator

● 7.3 The #error Directive

● 7.4 File Inclusion (#include)

● 7.4.1 Inclusion Using Angle Brackets (<>)

● 7.4.2 Inclusion Using Quotation Marks (" ")

● 7.4.3 Token Substitution in #include Directives

● 7.5 Specification of Line Numbers (#line, #)

● 7.6 Specification of Module Name and Identification (#module)

● 7.7 Implementation-Specific Preprocessor Directive (#pragma)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (9 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 7.7.1 #pragma charset

● 7.7.2 #pragma psect

● 7.7.3 #pragma module

● 7.7.4 #pragma list

●

● 7.7.6 #pragma [no]standard

● 7.8 Predefined Macros

● 7.8.1 PDP-11 C Predefined Macros

● 7.8.2 Digital Extension Macros

● 7.8.3 The _ _ DATE_ _ Macro

● 7.8.4 The _ _ TIME_ _ Macro

● 7.8.5 The _ _ FILE_ _ Macro

● 7.8.6 The _ _ LINE_ _ Macro

● 7.8.7 The _ _ STDC_ _ Macro

● 7.8.8 The _ _ RAD50 and _ _ RAD50L Macros

● 8 PDP-11 C Implementation Notes

● 8.1 Use of Memory Management Functions

● 8.1.1 Providing Alternative Space for Memory Management

● 8.2 Compilation Performance and Capacity on PDP-11 Host Systems

● 8.2.1 Data Caching

● 8.2.2 PDP-11 C Work File

● 8.3 PDP-11 C Run-Time Psects

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (10 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 8.4 Overlaying Tasks

● 8.5 RT-11 User Service Routine (USR) Load Area

● 8.6 Event Flags

● 8.7 Argument Passing Using Linkages

● 8.8 Defining Your Own Locales

● 8.9 Excluding printf Format Support Code

● A PDP-11 C Compiler Messages

● A.1 Introduction

● A.2 Compiler Messages

● ALC_TEMPOVERFLOW . . . CLP_INPUT_LINE_LONG

● CLP_INV_FILENAME . . . CLP_MISS_VALUE

● CLP_MODE_INCONSIST . . . LEX_CLOSE_FAILED

● LEX_CMT_UNCLOSED . . . LEX_IFEVALSTACK

● LEX_IFSYNTAX . . . LEX_INVALIDIF

● LEX_INVDEFNAME . . . LEX_IOEXISTS

● LEX_IOFNF . . . LEX_MESCHARSETDEF

● LEX_MESCHARSETREF . . . LEX_PASTEATEND

● LEX_PASTEUPFRONT . . . LEX_TOOMANYMACPARM

● LEX_UNDEFIFMAC . . . MIO_STACKOVERFLOW

● MRF_CLOSE . . . OGN_NO_OBJ_PRODUCED

● OGN_NO_ROOM_FOR_FILE . . . OVL_ROOT

● OVL_ROOT2 . . . SYN_BADPSECT

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (11 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● SYN_BITWINTREQ . . . SYN_DUPMAINFUNC

● SYN_DUPMEMBER . . . SYN_ILLFUNCPARAM

● SYN_ILLFUNCTYPE . . . SYN_INVBREAK

● SYN_INVCASEEXPR . . . SYN_INVFUNCCLASS

● SYN_INVFUNCDECL . . . SYN_INVREL

● SYN_INVSTORCLASS . . . SYN_LREM_INT

● SYN_MAIN02PARAMS . . . SYN_SHIFTINTREQ

● SYN_SIZEOFOBJ . . . SYN_UNDEFSTRUCT

● SYN_UNOTSCALREQ . . . WF_UNEXPECTED

● B PDP-11 C Header Files

● C PDP-11 C Internationalization

● C.1 Compiler Internationalization

● C.2 Run-Time Internationalization

● C.2.1 Set Locale Function (setlocale)

● C.2.2 Defining a Locale Structure (localeconv)

● C.2.3 Character Handling Functions

● D Language Summary

● D.1 Data Type Keywords

● D.2 Precedence of Operators

● D.3 Statements

● D.4 Conversion Rules

● D.5 PDP-11 C Escape Sequences

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (12 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● D.6 Preprocessor Directives

● Glossary

EXAMPLES

● 1- 1 Default Compiler Listing

● 1- 2 Compiler Listing Options

● 2- 1 Simple Addition in PDP-11 C

● 2- 2 Output of Information

● 2- 3 Output Using the Newline Character

●

● 2- 5 Conditional Execution Using the switch Statement

● 2- 6 Looping Using the do Statement

● 2- 7 Looping Using the for Statement

● 2- 8 Case Conversion Program

● 2- 9 Including <stdarg.h> in a Parameter List

● 2- 10 Declaring Functions

● 2- 11 Declaring Functions Passed as Arguments

● 2- 12 Echo Program Using Command-Line Arguments

● 2- 13 Scope of Variable Declarations in Nested Blocks

● 3- 1 Counting Blanks, Tabs, and Newlines Using the switch Statement

● 5- 1 Initializing an Array of Structures

● 5- 2 Character String Constants and Arrays

● 5- 3 Single Storage Allocation of Unions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (13 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 5- 4 Structures

● 6- 1 Scope and Externally Defined Variables

● 6- 2 Reinitializing Two auto Variables

● 6- 3 Using the globalvalue Specifier

● 7- 1 Nested Substitution Directives

● 7- 2 Using _ _ RAD50 and _ _ RAD50L Macros

● 8- 1 Setting Up Your Own Locale Tables

● C- 1 Sample Program Using localeconv

● C- 2 Using the Macro and Function Versions of isalnum

FIGURES

● 1- 1 DCL Commands for Developing Programs

● 2- 1 rvalues, lvalues, and Assigning Pointers

● 2- 2 The Indirection Operator in Assignments

● 4- 1 Boolean Algebra and the Bitwise Operators

● 4- 2 Shift Operators

● 5- 1 Alignment of Structure Members

TABLES

● 1- 1 Copying Files Among Operating Systems

● 2- 1 PDP-11 C Keywords

● 2- 2 VAX C Keywords

● 2- 3 Trigraph Sequences and Equivalence Characters

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (14 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 4- 1 PDP-11 C Operators

● 4- 2 Precedence of PDP-11 C Operators

● 5- 1 PDP-11 C Data Type Keywords

● 5- 2 Size and Range of PDP-11 C Integers

● 5- 3 PDP-11 C Escape Sequences

● 6- 1 PDP-11 C Storage Classes and Storage-Class Specifiers

● 6- 2 Scope and the Storage-Class Specifiers

● 6- 3 Location, Lifetime, and the Storage-Class Keywords

● 7- 1 Logical Names for PDP-11 C Include Files

● 7- 2 PDP-11 Character Sets

● 7- 3 Psect Types and Associated Data Types

● 8- 1 PDP-11 RTL Psects

● 8- 2 Global Symbols

● B- 1 PDP-11 C Standard Library Header Files

● B- 2 PDP-11 C FCS Extension Library Header Files

● B- 3 PDP-11 C RMS Extension Library Header Files

● B- 4 PDP-11 C System Interface Header Files

● D- 1 Data Type Keywords

● D- 2 Precedence of Operators

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.decw$book (15 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

Available tables:

● Contents (316 entries)

● Examples (29 entries)

● Figures (7 entries)

● Tables (24 entries)

● Index (887 entries)

Contents

(887 entries)

CONTENTS

● Title Page

● Copyright Page

● Preface

● 1 Developing PDP-11 C Programs

● 1.1 DCL Commands for Program Development

● 1.2 Creating a PDP-11 C Program

● 1.2.1 Using EDT

● 1.2.2 Using VAXTPU

● 1.2.3 Using KED

● 1.3 Compiling a PDP-11 C Program

● 1.3.1 The Compile Command

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (1 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 1.3.1.1 Compiling a Program on RSX Systems

● 1.3.1.2 Compiling a Program on RSTS/E Systems

● 1.3.1.3 Compiling a Program on RT-11 Systems

● 1.3.1.4 Compiling a Program on VMS Systems

● 1.3.2 Prompt Mode

● 1.3.3 Indirect Command Files

● 1.3.4 The PDP-11 C Command Qualifiers

● 1.3.5 Compiler Error Messages

● 1.3.6 Compiler Listings

● 1.4 Copying Files Among Target Environments

● 1.4.1 File Transfer (FIT) Program

● 1.4.2 File Transfer Utility (FLX)

● 1.4.3 VMS EXCHANGE Utility

● 1.5 Linking a PDP-11 C Program

● 1.5.1 Linking a Program on RSX Systems

● 1.5.2 Linking a Program on RSTS/E Systems

● 1.5.2.1 Invoking the RSX Task Builder on RSTS/E

● 1.5.2.2 Invoking the RT-11 Linker on RSTS/E

● 1.5.3 Linking a Program on RT-11 Systems

● 1.5.4 Linking a Program on VMS Systems

● 1.5.5 Task Builder Command-Line Elements

● 1.5.5.1 Creating CMD and ODL Files for Task Building

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (2 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 1.5.5.2 Command-Line Elements in CMD Files

● 1.5.5.3 Task Builder Qualifiers

● 1.5.6 Task Builder Error Messages

● 1.5.7 Storage Considerations

● 1.5.8 Library Usage

● 1.5.8.1 PDP-11 C Run-Time System Object Libraries

● 1.5.8.2 Using System Libraries

● 1.5.8.3 Creating User Libraries

● 1.5.8.4 Using the supervisor-mode Library

● 1.5.9 Overlays

● 1.6 Running a PDP-11 C Program

● 1.7 Debugging a PDP-11 C Program

● 2 Program Structure

● 2.1 C Programming Language Background

● 2.2 The PDP-11 C Programming Language

● 2.3 Writing a Program

● 2.4 Producing Input/Output

● 2.5 Controlling Program Flow

● 2.5.1 Testing for a Condition (if Statement)

● 2.5.2 Testing for Multiple Conditions (switch Statement)

● 2.5.3 Loops

● 2.6 Values, Addresses, and Pointers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (3 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 2.7 Function Definitions

● 2.7.1 Main Function and Function Identifiers

● 2.7.2 Parameter List Declarations

●

● 2.7.4 Variable-Length Parameter Lists

● 2.8 Function Declarations

● 2.8.1 Function Prototypes

● 2.9 Using Parameters and Arguments

● 2.9.1 Function and Array Identifiers as Arguments

● 2.9.2 Passing Arguments to the Function Main

● 2.10 Identifiers

● 2.11 Keywords

● 2.12 Blocks

● 2.13 Comments

● 2.14 Lexical Continuation

● 2.15 String Literal Concatenation

● 2.16 Trigraphs

● 3 Statements

● 3.1 The Labeled Statement

● 3.2 Compound Statement

● 3.3 The Null Statement

● 3.4 The Expression Statement

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (4 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 3.5 Selection Statements

● 3.5.1 The if Conditional Statement

● 3.5.2 The switch Statement

● 3.6 Iteration Statements (Looping)

● 3.6.1 The while Statement

● 3.6.2 The for Statement

● 3.6.3 The do Statement

● 3.7 Jump Statements

● 3.7.1 The goto Statement

● 3.7.2 The continue Statement

● 3.7.3 The break Statement

● 3.7.4 The return Statement

● 4 Expressions and Operators

● 4.1 Addresses (lvalues) and Objects (rvalues) of Variables

● 4.2 Overview of the PDP-11 C Operators

● 4.3 Primary Expressions and Operators

● 4.3.1 Parenthetical Expressions

● 4.3.2 Function Calls

● 4.3.3 Array References

● 4.3.4 Structure and Union References

● 4.4 Unary Operators

● 4.4.1 Negating Arithmetic and Logical Expressions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (5 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 4.4.2 Incrementing and Decrementing Variables

● 4.4.3 Computing Addresses and Dereferencing Pointers (& *)

● 4.4.4 Calculating a One's Complement (~)

● 4.4.5 Forcing Conversions to a Specific Type (Cast Operator)

● 4.4.6 Calculating Sizes of Variables and Data Types (sizeof)

● 4.5 Binary Operators

● 4.5.1 Additive Operators (+ -)

● 4.5.2 Multiplication Operators (* / %)

● 4.5.3 Equality Operators (= = !=)

● 4.5.4 Relational Operators (< > <= >=)

● 4.5.5 Bitwise Operators (& | ^)

● 4.5.6 Logical Operators (&& | |)

● 4.5.7 Shift Operators (<< >>)

● 4.6 Conditional Operator (?:)

● 4.7 Assignment Expressions and Operators

● 4.8 Comma Expression and Operator (,)

● 4.9 Data Type Conversions

● 4.9.1 Converting Operands

● 4.9.2 Converting Function Arguments

● 5 Data Types and Declarations

● 5.1 Constants

● 5.2 Variables

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (6 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 5.2.1 Classification of Variables

● 5.2.1.1 Data Type Keywords

● 5.2.1.2 Format of a Variable Declaration

● 5.3 Integers (int, long, short, char, signed, unsigned)

● 5.3.1 Integer Constants

● 5.3.2 Character Constants

● 5.3.3 Escape Sequences

●

● 5.5 Pointers

● 5.6 Enumerated Types (enum)

● 5.7 Arrays ([])

● 5.7.1 Initialization of Arrays

● 5.8 Character-String Variables and Constants (char * , char[])

● 5.9 Structures and Unions (struct, union)

● 5.9.1 Declaring a Structure or Union

● 5.9.2 Referencing Members of Structures or Unions

● 5.9.3 Initialization of Structures and Unions

● 5.9.4 Variant Structures and Unions

● 5.9.5 Bit-Fields

● 5.10 Aggregates

● 5.10.1 Arrays and Character Strings

● 5.10.2 Structures and Unions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (7 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 5.11 The void Keyword

● 5.12 The typedef Keyword

● 5.13 Interpreting Declarations

● 6 Scope, Storage Classes, and Allocation

● 6.1 The Scope of an Identifier

● 6.1.1 The Compilation and Linking Process

● 6.1.2 Position of the Declaration

● 6.1.3 Lexical Scope and Link-Time Scope

● 6.1.4 Program Example

● 6.2 Storage Allocation

● 6.3 Internal Storage Class

● 6.3.1 Defining a Variable for Automatic Storage Allocation (auto)

● 6.3.2 Defining a Variable for Placement in a Machine Register (register)

● 6.4 Static Storage Class

● 6.5 Global Storage Class

● 6.5.1 Global Names on PDP-11 Systems

● 6.5.2 Global Definitions

● 6.6 Defining Global Definitions (globaldef) and References (globalref)

● 6.7 Defining Global Values (globalvalue)

● 6.8 Explicit psect Control

● 6.8.1 Reducing Storage Requirements in Overlaid Tasks

● 6.8.2 Data Sharing Using psects

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (8 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 6.9 Data Type Qualifiers

● 6.9.1 The const Qualifier

● 6.9.2 The volatile Qualifier

● 6.10 Storage-Class Specifiers

● 7 Preprocessor Directives

● 7.1 Token Definitions (#define, #undef)

● 7.1.1 Object-Like Macros

● 7.1.2 Canceling Definitions (#undef)

● 7.1.3 Function-Like Macros

● 7.1.3.1 Stringizing Preprocessing Operator (#)

● 7.1.3.2 Token Concatenation Preprocessing Operator (##)

● 7.1.4 Listing Substituted Lines

● 7.2 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, #endif)

● 7.2.1 The defined Operator

● 7.3 The #error Directive

● 7.4 File Inclusion (#include)

● 7.4.1 Inclusion Using Angle Brackets (<>)

● 7.4.2 Inclusion Using Quotation Marks (" ")

● 7.4.3 Token Substitution in #include Directives

● 7.5 Specification of Line Numbers (#line, #)

● 7.6 Specification of Module Name and Identification (#module)

● 7.7 Implementation-Specific Preprocessor Directive (#pragma)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (9 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 7.7.1 #pragma charset

● 7.7.2 #pragma psect

● 7.7.3 #pragma module

● 7.7.4 #pragma list

●

● 7.7.6 #pragma [no]standard

● 7.8 Predefined Macros

● 7.8.1 PDP-11 C Predefined Macros

● 7.8.2 Digital Extension Macros

● 7.8.3 The _ _ DATE_ _ Macro

● 7.8.4 The _ _ TIME_ _ Macro

● 7.8.5 The _ _ FILE_ _ Macro

● 7.8.6 The _ _ LINE_ _ Macro

● 7.8.7 The _ _ STDC_ _ Macro

● 7.8.8 The _ _ RAD50 and _ _ RAD50L Macros

● 8 PDP-11 C Implementation Notes

● 8.1 Use of Memory Management Functions

● 8.1.1 Providing Alternative Space for Memory Management

● 8.2 Compilation Performance and Capacity on PDP-11 Host Systems

● 8.2.1 Data Caching

● 8.2.2 PDP-11 C Work File

● 8.3 PDP-11 C Run-Time Psects

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (10 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 8.4 Overlaying Tasks

● 8.5 RT-11 User Service Routine (USR) Load Area

● 8.6 Event Flags

● 8.7 Argument Passing Using Linkages

● 8.8 Defining Your Own Locales

● 8.9 Excluding printf Format Support Code

● A PDP-11 C Compiler Messages

● A.1 Introduction

● A.2 Compiler Messages

● ALC_TEMPOVERFLOW . . . CLP_INPUT_LINE_LONG

● CLP_INV_FILENAME . . . CLP_MISS_VALUE

● CLP_MODE_INCONSIST . . . LEX_CLOSE_FAILED

● LEX_CMT_UNCLOSED . . . LEX_IFEVALSTACK

● LEX_IFSYNTAX . . . LEX_INVALIDIF

● LEX_INVDEFNAME . . . LEX_IOEXISTS

● LEX_IOFNF . . . LEX_MESCHARSETDEF

● LEX_MESCHARSETREF . . . LEX_PASTEATEND

● LEX_PASTEUPFRONT . . . LEX_TOOMANYMACPARM

● LEX_UNDEFIFMAC . . . MIO_STACKOVERFLOW

● MRF_CLOSE . . . OGN_NO_OBJ_PRODUCED

● OGN_NO_ROOM_FOR_FILE . . . OVL_ROOT

● OVL_ROOT2 . . . SYN_BADPSECT

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (11 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● SYN_BITWINTREQ . . . SYN_DUPMAINFUNC

● SYN_DUPMEMBER . . . SYN_ILLFUNCPARAM

● SYN_ILLFUNCTYPE . . . SYN_INVBREAK

● SYN_INVCASEEXPR . . . SYN_INVFUNCCLASS

● SYN_INVFUNCDECL . . . SYN_INVREL

● SYN_INVSTORCLASS . . . SYN_LREM_INT

● SYN_MAIN02PARAMS . . . SYN_SHIFTINTREQ

● SYN_SIZEOFOBJ . . . SYN_UNDEFSTRUCT

● SYN_UNOTSCALREQ . . . WF_UNEXPECTED

● B PDP-11 C Header Files

● C PDP-11 C Internationalization

● C.1 Compiler Internationalization

● C.2 Run-Time Internationalization

● C.2.1 Set Locale Function (setlocale)

● C.2.2 Defining a Locale Structure (localeconv)

● C.2.3 Character Handling Functions

● D Language Summary

● D.1 Data Type Keywords

● D.2 Precedence of Operators

● D.3 Statements

● D.4 Conversion Rules

● D.5 PDP-11 C Escape Sequences

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (12 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● D.6 Preprocessor Directives

● Glossary

EXAMPLES

● 1- 1 Default Compiler Listing

● 1- 2 Compiler Listing Options

● 2- 1 Simple Addition in PDP-11 C

● 2- 2 Output of Information

● 2- 3 Output Using the Newline Character

●

● 2- 5 Conditional Execution Using the switch Statement

● 2- 6 Looping Using the do Statement

● 2- 7 Looping Using the for Statement

● 2- 8 Case Conversion Program

● 2- 9 Including <stdarg.h> in a Parameter List

● 2- 10 Declaring Functions

● 2- 11 Declaring Functions Passed as Arguments

● 2- 12 Echo Program Using Command-Line Arguments

● 2- 13 Scope of Variable Declarations in Nested Blocks

● 3- 1 Counting Blanks, Tabs, and Newlines Using the switch Statement

● 5- 1 Initializing an Array of Structures

● 5- 2 Character String Constants and Arrays

● 5- 3 Single Storage Allocation of Unions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (13 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 5- 4 Structures

● 6- 1 Scope and Externally Defined Variables

● 6- 2 Reinitializing Two auto Variables

● 6- 3 Using the globalvalue Specifier

● 7- 1 Nested Substitution Directives

● 7- 2 Using _ _ RAD50 and _ _ RAD50L Macros

● 8- 1 Setting Up Your Own Locale Tables

● C- 1 Sample Program Using localeconv

● C- 2 Using the Macro and Function Versions of isalnum

FIGURES

● 1- 1 DCL Commands for Developing Programs

● 2- 1 rvalues, lvalues, and Assigning Pointers

● 2- 2 The Indirection Operator in Assignments

● 4- 1 Boolean Algebra and the Bitwise Operators

● 4- 2 Shift Operators

● 5- 1 Alignment of Structure Members

TABLES

● 1- 1 Copying Files Among Operating Systems

● 2- 1 PDP-11 C Keywords

● 2- 2 VAX C Keywords

● 2- 3 Trigraph Sequences and Equivalence Characters

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (14 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 4- 1 PDP-11 C Operators

● 4- 2 Precedence of PDP-11 C Operators

● 5- 1 PDP-11 C Data Type Keywords

● 5- 2 Size and Range of PDP-11 C Integers

● 5- 3 PDP-11 C Escape Sequences

● 6- 1 PDP-11 C Storage Classes and Storage-Class Specifiers

● 6- 2 Scope and the Storage-Class Specifiers

● 6- 3 Location, Lifetime, and the Storage-Class Keywords

● 7- 1 Logical Names for PDP-11 C Include Files

● 7- 2 PDP-11 Character Sets

● 7- 3 Psect Types and Associated Data Types

● 8- 1 PDP-11 RTL Psects

● 8- 2 Global Symbols

● B- 1 PDP-11 C Standard Library Header Files

● B- 2 PDP-11 C FCS Extension Library Header Files

● B- 3 PDP-11 C RMS Extension Library Header Files

● B- 4 PDP-11 C System Interface Header Files

● D- 1 Data Type Keywords

● D- 2 Precedence of Operators

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tContents.decw$book (15 of 15)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

Available tables:

● Contents (316 entries)

● Examples (29 entries)

● Figures (7 entries)

● Tables (24 entries)

● Index (887 entries)

Examples

(887 entries)

EXAMPLES

● 1- 1 Default Compiler Listing

● 1- 2 Compiler Listing Options

● 2- 1 Simple Addition in PDP-11 C

● 2- 2 Output of Information

● 2- 3 Output Using the Newline Character

●

● 2- 5 Conditional Execution Using the switch Statement

● 2- 6 Looping Using the do Statement

● 2- 7 Looping Using the for Statement

● 2- 8 Case Conversion Program

● 2- 9 Including <stdarg.h> in a Parameter List

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tExamples.decw$book (1 of 2)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 2- 10 Declaring Functions

● 2- 11 Declaring Functions Passed as Arguments

● 2- 12 Echo Program Using Command-Line Arguments

● 2- 13 Scope of Variable Declarations in Nested Blocks

● 3- 1 Counting Blanks, Tabs, and Newlines Using the switch Statement

● 5- 1 Initializing an Array of Structures

● 5- 2 Character String Constants and Arrays

● 5- 3 Single Storage Allocation of Unions

● 5- 4 Structures

● 6- 1 Scope and Externally Defined Variables

● 6- 2 Reinitializing Two auto Variables

● 6- 3 Using the globalvalue Specifier

● 7- 1 Nested Substitution Directives

● 7- 2 Using _ _ RAD50 and _ _ RAD50L Macros

● 8- 1 Setting Up Your Own Locale Tables

● C- 1 Sample Program Using localeconv

● C- 2 Using the Macro and Function Versions of isalnum

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tExamples.decw$book (2 of 2)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

Available tables:

● Contents (316 entries)

● Examples (29 entries)

● Figures (7 entries)

● Tables (24 entries)

● Index (887 entries)

Figures

(887 entries)

FIGURES

● 1- 1 DCL Commands for Developing Programs

● 2- 1 rvalues, lvalues, and Assigning Pointers

● 2- 2 The Indirection Operator in Assignments

● 4- 1 Boolean Algebra and the Bitwise Operators

● 4- 2 Shift Operators

● 5- 1 Alignment of Structure Members

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tFigures.decw$book1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

Available tables:

● Contents (316 entries)

● Examples (29 entries)

● Figures (7 entries)

● Tables (24 entries)

● Index (887 entries)

Tables

(887 entries)

TABLES

● 1- 1 Copying Files Among Operating Systems

● 2- 1 PDP-11 C Keywords

● 2- 2 VAX C Keywords

● 2- 3 Trigraph Sequences and Equivalence Characters

● 4- 1 PDP-11 C Operators

● 4- 2 Precedence of PDP-11 C Operators

● 5- 1 PDP-11 C Data Type Keywords

● 5- 2 Size and Range of PDP-11 C Integers

● 5- 3 PDP-11 C Escape Sequences

● 6- 1 PDP-11 C Storage Classes and Storage-Class Specifiers

● 6- 2 Scope and the Storage-Class Specifiers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tTables.decw$book (1 of 2)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

● 6- 3 Location, Lifetime, and the Storage-Class Keywords

● 7- 1 Logical Names for PDP-11 C Include Files

● 7- 2 PDP-11 Character Sets

● 7- 3 Psect Types and Associated Data Types

● 8- 1 PDP-11 RTL Psects

● 8- 2 Global Symbols

● B- 1 PDP-11 C Standard Library Header Files

● B- 2 PDP-11 C FCS Extension Library Header Files

● B- 3 PDP-11 C RMS Extension Library Header Files

● B- 4 PDP-11 C System Interface Header Files

● D- 1 Data Type Keywords

● D- 2 Precedence of Operators

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tTables.decw$book (2 of 2)1/25/06 3:39 PM

PDP-11 C Guide to PDP-11 C

Available tables:

● Contents (316 entries)

● Examples (29 entries)

● Figures (7 entries)

● Tables (24 entries)

● Index (887 entries)

Index

(887 entries)

INDEX

A

● ACCVIO

● Additive operators

● Address-of operator

● Aggregates

● arrays

See also Bracket operators ([])

● character string (%c)

● character string (%s)

● character strings

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (1 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● defined

● structures

● unions

● variant

Allocation

● qualifiers

● AND bitwise operator

● Arguments

● command-line

● conversion of

● DCL command-line

● evaluation order in lists

● function prototypes

● functions used as

main function argument

● argc

● argv

● passing by value

● rules governing

to a function

● conversion of

● Arguments in #define preprocessor macros

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (2 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● Arithmetic conversion

Arithmetic operators

● negation

● Arrays

● as expressions

● declaration of

● initialization of

● references to

Assignment

operators

● precedence of

● Asterisk notation (*)

● auto

B

● \b, backspace

Binary operators

● additive

● bitwise

● equality

● logical

● multiplication

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (3 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● precedence of

● relational

● shift

● subtraction

● Bit-fields

● Bitwise operators

● Blocks

● Boolean algebra

See also Bitwise operators

Braces ({ })

● in compound statements

● in initializer lists

C

● Caching

● Case sensitivity

● Cast operator

CC command

● qualifiers

CC commands

● qualifiers

● CHANGE command

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (4 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

Character

● constants

data type

● variable

● strings

See also Arrays

● Character handling functions

Character set

● how to specify

● Character-string constants

See also Arrays

● limit of length

#charset

● preprocessor directive

Comma operator

● precedence of

● Command Languages

● CCL

● DCL

● MCR

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (5 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● Command-line arguments

● DCL

Commands

●

● CHANGE

● LINK

● RUN

● Comments

Common blocks

● resident

Compilation unit

● in determining scope

● Compiler messages

● Compiling

● listings

● on RSTS/E

● on RSX

● on RT-11

● on VMS

performance issues

● on PDP-11 host systems

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (6 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● prompting mode

● Compound statements

● Condition compilation

● Conditional operator

● precedence of

● const keyword

● Constants

● character

● escape sequence

● hexadecimal escape sequence

● character strings

● floating-point

● integer

● values of

● Conversions

● arithmetic

● function arguments

● of data types

● of function arguments

● rules

● with cast operator

Copying files

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (7 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● among operating systems

● /CR Task Builder qualifier

● Cross-reference listing

D

● /DA Task Builder qualifier

● Data caching

● Data sharing

● Data type keywords

● Data types

● conversion of

● function prototypes

● qualifiers

● scalar

● Debugging

● Declarations

aggregate

● arrays

● structures

● unions

● format of

function

● void

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (8 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● function prototypes

● inside of blocks

● interpreting

● overlapping scope of

● parameters

position of

● determining scope

scalar

● character constant

● character variable

● enumerated

● integer

● pointer

● vacuous tag declarations

● Declarators

● Decrement operator

● side effects within macros

● Default widening conventions

● defined operator

● #define directive

● Definitions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (9 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

function

● void

● functions

● Dereferencing

See also Pointers

DIGITAL Command Language

See also Command Languages

Directives

● #define

● #elif

● #else

● #endif

● #error

● # if

● #ifdef

●

● #include

● #line

● #module

● #pragma

● #pragma charset

● #pragma linkage

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (10 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● #pragma list

● #pragma module

● #pragma psect

● #pragma [no]standard

● #undef

● Disk libraries

● Division operator

● double keyword

E

● Editors

● EDT

● EVE

● KED

● VAXTPU

● #elif

#elif

● preprocessor directive

● Ellipses

#else

● preprocessor directive

#endif

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (11 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● preprocessor directive

● enum keyword

● Enumerated data type

● declaration of

● Equality operators

#error

● preprocessor directive

● Error Messages

● Compiler

● Escape sequences

● hexadecimal values

Evaluating expressions

See Expressions

● Event flags

● Explicit psect control

● Expressions

● as statements

● assignment

● changes to operators

● comma

evaluation order

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (12 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● ambiguity of

● primary

● array reference

● formal syntax of

● function call

● lvalues

● parentheses

● structure reference

● union reference

● [extern] keyword

● [extern] specifier

F

● \f, form feed

● FCSFSL library

● FCSRES library

● File Transfer (FIT) Program

● File Transfer Program (FLX)

Files

● compiler input

● map

● float keyword

Floating-point

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (13 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● constants

data type

● declaration of

● double

● long

● precision of

● sizes of

● Floating-point microcode option

● Floating-point processor

Forward referencing

● structures

● /FP Task Builder qualifier

● Function argument conversion

Functions

● address of

● argument conversion

● arguments

● as arguments

● calls to

● within macros

● declarations

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (14 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● definitions

definitions of

● argument conversion

● fopen

● getchar

● identifiers

● implicit declaration of

● introduction to

● localeconv

● parameter declaration

● parameter lists

● parameters

printf

● excluding format code

● printf

● prototypes

● for PDP-11 C RTL functions

● scope rules

● widening rules

● return data types

● return values of

● scope of

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (15 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● setlocale

● strcpy

● undeclared

● varargs functions and macros

● void function return type

● void keyword

● F_floating declaration

G

● Global definitions

● Global names

Global storage class

● [extern]

● globaldef

● globalref

● globalvalue keyword

H

● Header files

● descriptions of

I

● Identifiers

#if

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (16 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● defined operator

● preprocessor directive

#ifdef

● preprocessor directive

#ifndef

● preprocessor directive

#include

● preprocessor directive

● Include files

● Including files

● Increment operator

● side effects within macros

● Indirection operator

Initialization

● arrays

● character-string variables

● characters

● integers

● structures

● unions

● Initializers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (17 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● Input/output

● Integer constants

● invalid

Integer data types

● declaration of

● sizes of

● Internal storage class

Internationalization

● compiler

● run-time

● Iteration statements

See also Statements

J

● Jump statements

K

● KEF11A option

● Keywords

● auto

● break

● case

● char

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (18 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● const

● continue

● default

● do

● double

● else

● enum

● extern

● float

● for

● globaldef

● globalref

● globalvalue

● goto

● if

● int

● long

● noshare

● readonly

● register

● return

● short

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (19 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● signed

● sizeof

● static

● struct

● switch

● typedef

● union

● unsigned

● variant_struct

● variant_union

● void

● volatile

● while

L

● Labeled statements

● /LB Task Builder qualifier

● LB:SYSLIB.OLB

● LB:[1,1]SYSLIB.OLB

● Lexical continuation

● Lexical scope

● Library

● CEISRE.OLB

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (20 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● CEISRSX.OLB

● CFPURE.OLB

● CFPURSX.OLB

● CFPURT.OLB

● disk

● Librarian Utility Program

● resident

● RSTS/E

● RSX

● RSX system

● run-time

● supervisor-mode

● system

● System

● text

● user

Lifetime

● of stored objects

Limit

● nesting

#line

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (21 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● preprocessor directives

● Link-time scope

#linkage

● preprocessor directive

● Linkages

Linking

● on RSTS/E systems

● on RSX systems

● on RT-11 systems

● on VMS systems

#list

● preprocessor directive

Locales

● defining your own

Logical

● negation operator

● operators

● long keyword

● Loop constructs

● for loop

● loop incrementing

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (22 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● lvalues

M

● Macro definitions

● canceling

● listing substituted lines

● naming parameters in

● possible side effects

● Macro substitution

● introduction to

● Macros

● _ _ DATE_ _

● Digital extension

● _ _ FILE_ _

● function-like

● _ _ LINE_ _

● object-like

● _ _ RAD50

● _ _ RAD50L

● _ _ STDC_ _

● _ _ TIME_ _

Main function

See also Arguments

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (23 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● passing parameters to

● syntax of

● Map file

● Maximum depth

Members

● defined

● variant aggregates

●

● on RSTS/E

● on RSX

● on RT-11

● providing alternative space

/MEMORY qualifier

● in data caching

Messages

● compiler

● Mixed language programming

#module

● preprocessor directive

Module name

● changing the default

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (24 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● Modulo operator

● /MP Task Builder qualifier

● /MU Task Builder qualifier

● Multiplication operators

N

● \n, newline

Negation

● arithmetic and logical

#pragma[no]standard

● preprocessor directive

● NUL

Null

● pointer

● Null statement

O

Object module

● in determining scope

Objects

● of variables

● ODT system debugging aid

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (25 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● One's complement operator

● Operand conversion

Operating Systems

● host

● target

● Operators

● address of (&)

● AND

● assignment

● binary

● additive

● bitwise

● equality

● logical

● modulo

●

● relational

● shift

● subtraction

● bracket

● categories of

● comma

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (26 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● conditional

● decrement (- -)

● defined

● increment (++)

● indirect

● indirection (*)

● list of

● logical OR

● not equal to (!=)

● precedence of

● unary

● address of

● cast

● increment and decrement

● indirection

● negation

● one's complement

● OR bitwise operator

● Overlaying tasks

● Overlays

P

● Parameters

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (27 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● declarations

● function prototypes

● main function

● rules governing

● Parameters in #define preprocessor macros

PDP-11 C language

● aggregates

● arrays

● character strings

● elements

● list of operators

● members

● scalars

● structures and unions

● PDP-11 C Run-Time Library (RTL)

● linking to

● portability concerns

● PDP11C$INCLUDE logical name

● Performance Issues

●

● PDP-11 C work file

Pointer

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (28 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● arithmetic

● Pointer arithmetic

● Pointers

● declaration of

● null

● unary operator

Portability concerns

● character string length

● character-string constants

● # charset directive

● comparing pointers and integers

● direction of bit-field packing

● global system status values

● int values on a VAX

● length of argument list

● length of bit-fields

● length of identifiers

● lexical scope and compilation units

● # linkage directive

● # list directive

● long float keyword

● # module directive

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (29 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● parameter declarations

● #pragma [no]standard directive

● predefined symbols

● preprocessor implementations

● preprocessor substitutions

● # psect directive

● referencing aggregate members

● structure alignment

● UNIX file specifications

inline

● preprocessor directive

#pragma

● preprocessor directive

● Precedence of operators

● in interpreting declarations

● Predefined symbols

● Preprocessor directives

● #charset

● #define

● #elif

● #else

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (30 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● #endif

● #error

●

● #ifdef

● #ifndef

● #include

● token substitution

● #line

● #linkage

● #list

● #module

● #pragma

● #pragma [no]standard

● #psect

● # undef

● Preprocessor substitutions

● Primary expressions

See also Expressions

● array reference

● function call

● lvalues

● parentheses

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (31 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● structure reference

● union reference

Primary operators

● precedence of

● Privacy

See also Scope

Program creation

● compiling

● editing

● linking

● running

● writing

● Program structure

● ANSI standard

● introduction to

● portability concerns

● UNIX system environment

#psect

● preprocessor directive

R

● \r, carriage return

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (32 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● _ _ RAD50

● _ _ RAD50L

● register

● register keyword

● Relational operators

● Reserved words

● Resident libraries

● RMSRES library

● RUN command

● run-time errors

● Run-time errors

● Run-time library

● Run-time PSECTS

S

● Scalar data types

● declarations

● character

● enumerated

● floating-point

● integer

● pointers

● defined

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (33 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● Scope

● auto variables

● in a compilation unit

● in a program

● in an object module

● lexical scope

● link-time scope

● of functions

● position of declarations

● Selection statements

● Shift operators

● sizeof keyword

Slash characters

● double

● /SP Task Builder qualifier

Specifiers

● storage class

Stack

● calculating space

● Statements

● blocks

● break

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (34 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● case

● compound

● continue

● default

● do

● expressions

● for

● goto

● if

● iteration

● jump

● labels

● like

● null

● return

● selection

● switch

● tolower

● while

● static

● static keyword

● Static storage class

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (35 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

Storage

● qualifiers

● Storage allocation

● explicit psect control

● for program sections

● lifetime of variables

● location of

● overlaid tasks

● psect

● registers

● run-time stack

● Storage classes

● defined

● global

● definitions and declarations

● in determining scope

● internal

● auto keyword

● register keyword

● list of

● order of keywords in declarations

qualifiers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (36 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● const

● introduced

● volatile

● specifiers

● auto keyword

● extern

● globaldef

● globalref

● globalvalue

● keyword register

● list of

● (none)

● static

● static keyword

● Storage-class modifiers

● Storage-class qualifiers

●

● strcpy

String data type

● declaration of

See also Arrays

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (37 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● String literal concatenation

● Stringizing preprocessing operator

● strncpy

Structures

● bit-fields

● declaration of

● forward referencing

● initialization

● initialization of

● introduction to

members of

● references to

● variant aggregates

Substitution

● macros

token

● within #include directives

● Subtraction operator

● supervisor-mode Library

● Symbolic constants

Syntax

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (38 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● main function

● SYS

● SYS$LIBRARY

T

● \t, horizontal tab

Tags

● vacuous declarations

Task Builder

● command-line elements

● creating CMD files

● creating ODL files

● error messages

● qualifiers

● uses

● Task image

Token

substitution

● within #include directives

● Token concatenation preprocessing operator

● Token replacement

Tranferring files

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (39 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● among operating systems

● Trigraphs

truth

● value

● TSK file type

● Type conversions

● Type specifiers

● typedef keyword

U

Unary expressions

● address of

● cast

● increment and decrement

● indirection

● negation

● one's complement

● sizeof

Unary operators

● precedence of

#undef

● preprocessor directive

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (40 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

Union

● initialization

Unions

● declaration of

● initialization of

● introduction to

members of

● references to

● variant aggregates

● User Service Routine load area

User-defined functions

See Functions

● Usual arithmetic conversions

V

● \v, vertical tab

● Vacuous tag declarations

Values

● defined

● Lvalues

● of constants

● of variables

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (41 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

● Rvalues

Variables

● character

declarations

● format of

● declared in overlapping blocks

● identifiers

● objects of

● values of

●

● variant_union

Virtual address space

● increasing

● VMS EXCHANGE Utility

● void keyword

● volatile keyword

W

● White space

X

● XOR bitwise operator

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.tIndex.decw$book (42 of 42)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

1989, 1990, 1992Digital Equipment Corporation

 PDP-11 C
 Guide to PDP-11 C

 January 1992
 This guide describes how to create, link, and execute PDP-11 C
 programs. It contains information on PDP-11 C program development
 in the PDP-11 and VMS environments and cross-system portability
 concerns.

 Revision/Update Information: This is a revised manual.
Operating System and Version: Micro /RSX Version 4.3 or higher
 RSTS/E Version 10.0 or higher
 RSX-11M (mapped) Version 4.6 or
 higher
 RSX-11M-PLUS Version 4.3 or
 higher
 RT-11 Version 5.5 or higher
 VMS Version 5.4 or higher

 Software Version: PDP-11 C Version 1.2

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p5.decw$book1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 The information in this document is subject to change without notice and should
 not be construed as a commitment by Digital Equipment Corporation. Digital
 Equipment Corporation assumes no responsibility for any errors that may appear in
 this document.
 The software described in this document is furnished under a license and may be
 used or copied only in accordance with the terms of such license.
 No responsibility is assumed for the use or reliability of software on equipment that
 is not supplied by Digital Equipment Corporation or its affiliated companies.
 Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
 to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
 and Computer Software clause at DFARS 252.227-7013.
 © Digital Equipment Corporation 1989, 1990, 1992.
 All Rights Reserved.
 Printed in U.S.A.
 The Reader's Comment form at the end of this document requests your critical
 evaluation to assist in preparing future documentation.
 The following are trademarks of Digital Equipment Corporation: DEC, PDP, PDP-11,
 Micro /RSX, RSTS, RSTS/E, RSX, RSX-11M, RSX-llM-PLUS, RSX-11S, RT-11,
 RX-11, VAX, VAXcluster, VAX-11 RSX, VMS, and the DIGITAL logo.
 UNIX is a registered trademark of UNIX System Laboratories, Inc.
 This document is available on CDROM.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p6.decw$book1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Preface
 This guide combines reference information for the PDP-11 C
 programming language with information necessary for
 developing and debugging PDP-11 C programs on PDP-11
 and VMS environments. The guide also includes information
 concerning the porting of C programs to and from PDP-11
 and other environments, as well as the differences between
 PDP-11 C and other implementations of the C programming
 language. For additional information concerning porting
 programs to and from other operating systems, refer to the
 PDP-11 C Run-Time Library Reference Manual .
 Intended Audience

 This guide is intended for experienced programmers who
 need to learn PDP-11 C, or for users who need to know the
 difference between PDP-11 C and other implementations.
 Readers should be familiar with one high-level language, the
 DIGITAL Command Language (DCL) and their operating
 systems.
 Document Structure

 This guide has eight chapters, four appendixes, and a
 glossary. They are as follows:

 .
 Chapter 1 explains how to edit, compile, link, and run
 a PDP-11 C program. It also describes how to use
 debugging aids.
 .
 Chapter 2 explains program structure.
 .
 Chapter 3 describes PDP-11 C statements.
 .
 Chapter 4 discusses expressions and operators used in
 PDP-11 C.
 .
 Chapter 5 explains data types and declarations.
 .
 Chapter 6 describes storage classes and allocation.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p11.decw$book (1 of 5)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 .
 Chapter 7 explains preprocessor directives.
 .
 Chapter 8 explains features of the PDP-11 C implemen-
 tation.
 .
 Appendix A lists PDP-11 C compiler messages.
 .
 Appendix B describes PDP-11 C definition modules.
 .
 Appendix C describes compiler and run-time interna-
 tionalization.
 .
 Appendix D provides a summary of all PDP-11 C
 language features.
 .
 The Glossary provides an alphabetical listing of key terms
 used in this manual.
 Associated Documents

 You may find the following documents useful when
 programming in PDP-11 C:

 .
 PDP-11 C Installation Guide -For system programmers
 who install the PDP-11 C software.
 .
 PDP-11 C Run-Time Library Reference Manual -For
 programmers who wish to use the PDP-11 C Run-Time
 Library functions and who need additional information
 concerning porting programs to and from other operating
 systems.
 .
 RSX-11M/M-PLUS and Micro /RSX Task Builder
 Manual -For programmers who need information about
 using the Task Builder on RSX systems.
 .
 RSTS/E Task Builder Reference Manual -For program-
 mers who need information about using the Task Builder
 on RSTS/E systems.
 .
 RT-11 System Utilities Manual -For programmers who

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p11.decw$book (2 of 5)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 need information about using the linker on RT-11.
 .
 The C Programming Language

 1
 -For those who need a
 more intensive tutorial than that provided in Chapter 2.
 Conventions

 Convention Meaning

 xxx

 The symbol

 xxx

 represents a single
 stroke of a key on a terminal. For
 example,

 Tab

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p11.decw$book (3 of 5)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 indicates that you
 should press the key labeled Tab.
 Ctrl/ x The symbol Ctrl/ x , where letter x rep-
 resents a terminal control character,
 is generated by holding down the
 Ctrl key while pressing the key of the
 specified terminal character.
 . . . Horizontal ellipsis indicates that you
 can enter additional parameters,
 values or other information. A comma
 that precedes the ellipsis indicates that
 successive items must be separated by
 commas.
 .
 .
 .

 A vertical ellipsis indicates that not
 all the text of a program or program
 output is illustrated. Only relevant
 material is shown in the example.
 [] Brackets usually indicate optional
 syntax. However, brackets that are
 part of directory names and brackets
 that are used to delimit the dimen-
 sions of a multidimensional array in
 PDP-11 C source code do not indicate
 optional syntax.
 UPPERCASE WORDS Uppercase words and letters in syntax
 formats indicate that you enter the
 word or letter exactly as shown.
 lowercase words Lowercase words or letters in syntax
 formats indicate that you substitute a
 word or value of your choice.
 boldface Boldface type in interactive examples
 is used to show user input. Boldface
 type in the text identifies language
 keywords and the names of PDP-11 C
 Run-Time Library functions.
 italic Italic type is used to identify variable
 names and the names of definition

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p11.decw$book (4 of 5)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 modules.
 sc-specifier ::=
 auto
 static
 extern
 register

 In syntax definitions, items appear-
 ing on separate lines are mutually
 exclusive alternatives.
 ¡ A delta symbol is used in some con-
 texts to indicate a single ASCII space
 character.

 Unless otherwise stated, all commands are followed by
 pressing the Return key.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p11.decw$book (5 of 5)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1. Developing PDP-11 C Programs
 This chapter describes how to create, compile, link, and run
 a PDP-11 C program using DCL commands as well as
 alternative MCR and CCL commands where applicable.

 The host operating systems are as follows:

 .
 RSX-11M-PLUS
 .
 RSX-11M (mapped)
 .
 Micro /RSX
 .
 RSTS/E (RSX RT)
 .
 RT-11 (XM Monitor only)
 .
 VMS

 The target operating systems are as follows:

 .
 RSX-11M-PLUS
 .
 RSX-11M
 .
 RSX-11S
 .
 Micro /RSX
 .
 RSTS/E (RSX RT)
 .
 RSTS/E (RT-11 RT)
 .
 RT-11
 .
 VAX-11 RSX

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p13.decw$book1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.1 DCL Commands for Program Development
 This section briefly describes the Concise Command
 Language (CCL), DIGITAL Command Language (DCL), and
 Monitor Console Routine (MCR) commands used to create,
 compile, link, and run a PDP-11 C program. Figure 1-1
 shows these commands. For a more detailed description
 of each command on the VMS, RSX, RSTS/E, and RT-11
 operating systems, see the sections that follow.

 The following example shows each of the commands shown
 in Figure 1-1 executed in sequence. For the specific
 compiler and linker command formats and qualifiers on
 your operating system, see the section on linking for that
 system.
 $ edit ave.c
 $ cc ave
 $ link ave,lb:[1,1]cfpursx/library
 $ run ave

 Throughout this chapter, the PDP-11 C compile command
 will be CC in sections that are not referring to a specific
 operating system. However, note that different operating
 systems require different compile commands. Refer to
 Section 1.3 for the different command formats found on
 each specific operating system.

 To create a PDP-11 C source program at DCL level, you
 must invoke a text editor. In the previous example, Digital's
 standard editing utility, EDT, is invoked to create the source
 program AVE.C. You can use the EDT editor on RSX,
 RSTS/E, and VMS systems. Other editors are available on
 specific operating systems. By convention, the file type for a
 PDP-11 C source program is the letter C.

 When you compile your program using PDP-11 C, you
 do not have to specify the file type; by default, PDP-11 C
 searches for a file with a C file type.

 If your source program compiles successfully, the PDP-

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p14.decw$book (1 of 2)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 11 C compiler creates an object file with the file type OBJ.
 However, if the PDP-11 C compiler detects errors in your
 source program, the compiler displays each error on your
 screen and then returns to the operating system prompt.
 You can then reinvoke your text editor to correct the errors.
 Object files will be created if the error severity is either a
 warning level or an informational level. If the error severity
 is an error level, no object file will be created.

 You can include command qualifiers when invoking the
 compiler. Command qualifiers cause the PDP-11 C compiler
 to perform additional actions. In the following example, the
 /LIST qualifier causes the PDP-11 C compiler to produce a
 listing file:
 $ cc/list ave

 For a complete list and explanation of all the command
 qualifiers supported by the PDP-11 C compiler, see
 Section 1.3.4.

 Once your program has compiled successfully, you invoke the
 Task Builder (for RSTS/E or RSX target systems) or the RT-
 11 Linker (for RT-11 or RSTS/E target systems) to create an
 executable image file. The Task Builder and RT-11 Linker
 use the object file produced by PDP-11 C as input to produce
 an executable file.

 You can specify command qualifiers with the DCL command
 LINK or with the MCR or CCL command TKB. For a
 list and explanation of the most commonly used command
 qualifiers available with the LINK or TKB commands, see
 Section 1.5.5.3.

 Once the executable file has been created, you can run your
 program with the RUN command.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p14.decw$book (2 of 2)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.2 Creating a PDP-11 C Program
 To create or modify a PDP-11 C program, you must invoke
 a text editor. The following table shows which editors are
 available for each operating system.

 System Editors

 RSX EDT
 RSTS/E EDT
 VMS EDT or VAXTPU
 RT-11 KED

 1.2.1 Using EDT
 The Digital Editor (EDT) is an interactive general-purpose
 text editor that offers three editing modes: keypad, nokeypad,
 and line. With keypad mode, you issue commands by using
 the numeric keypad that appears on the right of your main
 keyboard. With nokeypad mode, you enter commands on
 a command line, which EDT processes when you press the
 Return key. With line mode, you issue commands at the line
 mode asterisk prompt (
 *

). Line mode focuses on the line as
 the unit of text.

 EDT is available for use on RSTS/E, RSX, and VMS systems.
 The editor available on RT-11 is KED, referenced in
 Section 1.2.3 of this guide.

 Keypad mode and nokeypad mode continually display the
 contents of the file on your screen. When you begin your
 editing session, editing in line mode is the default. Unlike
 keypad and nokeypad mode, line mode displays only one line

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p16.decw$book (1 of 6)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 of text on your screen.

 Use the following syntax to invoke the EDT editor and create
 a file.

 On RSTS/E :
Under DCL, enter:
 edit [/qualifier . . .] file-specification

 When you are working under RSTS/E DCL, you have the
 option of using the CCL EDT command with its qualifiers
 and specifiers.

 Under CCL, enter:
 edt [[output_file_spec] [,journal-file]=jrn_file_spec] input_file_spec
 [,command-file] [/qualifier . . .]

 On RSX :
Under DCL, enter:
 edit/edt [/qualifiers . . .] input_file_spec

 Under MCR, enter:
 edt [[output_file_spec][,journal-file=jrn_file_spec]] input_file_spec[,com_
 file_spec] [/qualifier . . .]

 On VMS :
Use the following command:
 edit/edt file_spec

 Use these keys to move between types of editing modes:

 .
 To change from line mode to keypad mode, enter the
 CHANGE command at the asterisk prompt.
 .
 To return to line mode from keypad mode, press Ctrl/Z.
 .
 To change from line mode to nokeypad mode, use the SET
 NOKEYPAD command, and then enter the CHANGE
 command at the asterisk prompt.

 When you invoke EDT to create a file, a journal file is created

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p16.decw$book (2 of 6)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 automatically. You can use this journal file to recover your
 edits if the system fails during an editing session. To recover
 your edits, use the EDIT/RECOVER command followed by
 the name of the file you were editing.

 EDT provides an online help facility that you can access
 during an editing session.

 .
 In line mode, use the HELP command. EDT displays
 general information on EDT as well as detailed
 information on both line mode editing and nokeypad
 mode editing.
 .
 In keypad mode, press the HELP key or the PF2 key.
 EDT displays a keypad diagram on your screen and a list
 of keypad editing keys. For help on a specific editing key,
 press that key.

 On VMS, you can define a global symbol for the EDIT
 /EDT command by placing a symbol definition in your
 LOGIN.COM file. For example:
 $ EDT == "EDIT/EDT"

 After this command line is executed, you can enter EDT at
 the DCL prompt followed by the name of the file you want to
 modify or create.

 For more information on using the advanced features of
 EDT on VMS, see the Guide to VMS Text Processing . For
 more information on using the advanced features of EDT on
 RSTS/E and RSX, see the EDT Editor Manual .

 1.2.2 Using VAXTPU
 The VAX Text Processing Utility (VAXTPU) is a high-
 performance, programmable utility. VAXTPU provides the
 Extensible VAX Editor (EVE) editing interface. You can also
 create your own interfaces.

 Like EDT, VAXTPU provides you with an online help facility
 that you can access during your editing session. When you
 invoke VAXTPU to create a file, a journal file is created

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p16.decw$book (3 of 6)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 automatically. You can use this journal file to recover your
 edits if the system fails during an editing session. To recover
 your edits, use the EVE/RECOVER command.

 Unlike EDT, VAXTPU provides multiple windows. This
 feature allows you to view two files on your screen at the
 same time. VAXTPU also provides you with other advanced
 features, such as two editing interfaces.

 The following section describes how to use the EVE interface.

 The EVE Interface
 EVE is an interactive text editor that allows you to execute
 common editing functions using the EVE keypad, or to
 execute more advanced functions by typing commands on
 the EVE command line. The following command line invokes
 the EVE editor and creates the file, AVE.C:
 $ edit/tpu ave.c

 You can define a global symbol for the EDIT/TPU command
 by placing a symbol definition in your LOGIN.COM file. For
 example:
 $ EVE == "EDIT/TPU"

 After this command line is executed, you can enter EVE at
 the DCL prompt followed by the name of the file you want to
 modify or create.

 VAXTPU uses a buffer, a temporary holding area, to manage
 the editing session. The contents of the edit session are shown
 in an area of the screen that is called a window. The [End
 of file] message defines the end of the workspace. It is only
 visible on the screen and is not interpreted. A highlighted
 status line, located at the bottom of the window, shows the
 buffer name, current mode (insert or overstrike), and the
 current direction (forward or reverse).

 VAXTPU manages the buffers with commands that do the
 following:

 .
 List all of the buffers used in this edit session

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p16.decw$book (4 of 6)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 .
 Delete a specified buffer
 .
 Change the buffer displayed in the window
 .
 Create a new buffer that contains the contents of a
 specified file
 .
 Write the contents of a buffer to a specified file

 The EVE editing interface allows you to view more than
 one window on your terminal screen at the same time.
 For example, you can edit the source code in one window
 and display the listing file in another window. To help you
 manage the windows, VAXTPU commands are available to
 do the following:

 .
 Split the screen into more than one window
 .
 Put the cursor in the next, previous or other window
 .
 Restore the current window as a single, large window
 .
 Enlarge or shrink the current window by a specified
 number of lines

 For more information about windows, buffers, and the
 VAXTPU commands, access the online help utility for the
 EVE editor. Press the Do or PF4 key, or enter Ctrl/B to
 reveal the VAXTPU prompt and enter the HELP command.
 Guide to VMS Text Processing has more information on using
 the advanced features of EVE.

 1.2.3 Using KED
 The PDP-11 Keypad Editor (KED) is a program that you
 can use to create, inspect, and edit files. When you use the
 keypad editor, you control the different editing processes by
 using a set of functions and a set of commands.

 The following command line invokes the editor and creates
 the file AVE.C:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p16.decw$book (5 of 6)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 . edit ave.c

 The keypad editor provides a help function. When the keypad
 editor fails, it signals you by loading a one line explanation of
 the signal in an internal message buffer. When you use the
 help function, the editor temporarily erases the bottom three
 screen lines and displays the explanation.

 For more information about KED, see the PDP-11 Keypad
 Editor User's Guide .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p16.decw$book (6 of 6)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.3 Compiling a PDP-11 C Program
 The PDP-11 C compiler can compile any program
 conforming to the ANSI Standard for the C language. The
 PDP-11 C compiler is highly compatible with VAX C.

 The PDP-11 C compiler performs the following functions:

 .
 Detects errors in your source program
 .
 Displays each error on your screen and writes the errors
 to the listing file (if selected)
 .
 Generates machine language instructions from the source
 statements
 .
 Groups these language instructions into an object module
 for the Task Builder or the RT-11 Linker

 1.3.1 The Compile Command
 To invoke the PDP-11 C compiler, use the compile command.
 The compile command has the following format:
 command[/qualifier . . .] [file-spec [/qualifier . . .]], . . .

 The command used to invoke the compiler differs depending
 on the specific operating system and command line
 interpreter you are using. See the following sections for
 the specific command you will need.

 Note

 All user input is converted to uppercase unless
 enclosed by quotation marks.

 /qualifier
 Specifies an action to be performed by the compiler on all

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (1 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 files or specific files listed. When a qualifier appears directly
 after the compile command, it affects all the files listed.
 However, when a qualifier appears after a file specification
 in a comma-separated list, it affects only the file that
 immediately precedes it. When files are concatenated, the
 qualifier affects all the files in the concatenation.

 file-spec
 Specifies an input source file that contains the program or
 module to be compiled. You are not required to specify a file
 type if you have given your file a C file type; the PDP-11 C
 compiler adopts the default file type C.

 You can include more than one file specification on the
 same command line by separating the file specifications
 with either a comma (,) or a plus sign (+). If you separate
 the file specifications with commas, you can control which
 source files are affected by each qualifier. Using the comma
 separator also causes the compiler to generate individual
 output files for each source file specified. In the following
 example, the PDP-11 C compiler creates an object file for
 each source file but creates only a listing file for the source
 files PROG1 and PROG3.
 $ cc /list prog1, prog2/nolist, prog3

 If you separate file specifications with plus signs, the PDP-11
 C compiler concatenates each of the specified source files
 to form a compilation unit and creates one object file and
 one listing file. In the following example, only one object file
 is created, PROG3.OBJ, and only one listing file is created,
 PROG2.LST. Unlike VAX C, the names of default object and
 listing files are taken from the last source file in the list.
 $ cc prog1 + prog2/list + prog3

 Note that any qualifiers specified for a single file within a list
 of files separated with plus signs affect all the files in the list.

 1.3.1.1 Compiling a Program on RSX Systems
 On RSX systems, you can invoke the PDP-11 C compiler
 from either DCL or MCR. You can invoke the compiler from
 DCL by entering the following command line:
 CC[/qualifier . . .] [file_spec[/qualifier . . .]], . . .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (2 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 PDP-11 C is installed with the MCR task name CCC. You
 can invoke the compiler from MCR by entering the following
 command line:
 CCC[/qualifier . . .] [file_spec[/qualifier . . .]], . . .

 The following example produces an object module format that
 can be read by the RSX Task Builder:
 $ ccc prog1

 1.3.1.2 Compiling a Program on RSTS/E Systems
 You can invoke the compiler on RSTS/E using either the CCL
 CCC command or the DCL CC command.

 To use CCL, enter:
 CCC[/qualifier . . .] [file_spec[/qualifier . . .]], . . .

 To use DCL, enter:
 CC[/qualifier . . .] [file_spec [/qualifier . . .]], . . .

 The following examples produce object module formats that
 can be read by the RSTS/E Task Builder:
 $ ccc prog1
 $ cc prog1

 Note

 The OBJ formats for RSX and RSTS/E are identical.

 1.3.1.3 Compiling a Program on RT-11 Systems
 On RT-11 systems, you invoke the compiler by using the CC
 command:
 CC [/qualifier . . .] [file_spec[/qualifier . . .]], . . .

 The following example produces an object module format
 that can be linked by the RT-11 Linker on RT-11 or RSTS/E
 systems:
 $ cc /list prog1

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (3 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Note

 On RT-11 systems, you must include at least a single
 space character between the CC command and the
 first qualifier or file specification.

 See Section 1.3.4 for more details on command qualifiers and
 how to avoid using parentheses on the command line.

 1.3.1.4 Compiling a Program on VMS Systems
 To invoke the PDP-11 C compiler on VMS systems, use the
 PDPCC command:
 PDPCC [/qualifier . . .] [file_spec[/qualifier . . .]], . . .

 The resulting object file will be in the correct format for the
 PDP-11 target systems.

 The following example produces an object file (OBJ file type)
 that can be linked by the RSX Task Builder on either RSX
 systems or under the RSX emulator on RSTS/E systems:
 $ pdpcc/environment=(pic)/list prog2

 If you have the VAX-11 RSX emulator installed on your
 VMS system, you can also link this object file on VMS.

 1.3.2 Prompt Mode
 The PDP-11 C compiler supports a prompting mode that
 enables you to create an environment to compile one or more
 programs. In prompting mode, you can set the qualifiers
 once and until you reset the qualifiers or exit the prompting
 mode, those qualifiers will remain activated. This mode is
 invoked whenever the compiler is called without specifying
 any filespec.

 The format of the command level interface is exactly the
 same as that of DCL. For example:
 $ cc
 CC> prog1/list/environment=fpu

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (4 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 To return to DCL, enter Ctrl/Z.
In this example, the file PROG1 is compiled, a listing file is
 created, and the compiler generates code using the Floating
 Point Processor.

 To continue a line in prompting mode, use a hyphen (-).
 The command line processor treats this exactly like DCL
 does. Note that any prompt line that contains an input
 file specification and does not end in a hyphen will start a
 compilation. The next CC> prompt will be displayed only
 after that compilation has finished. To exit from prompt
 mode, enter Ctrl/Z. As with other PDP-11 layered products,
 any command line that is terminated by Ctrl/Z is not
 executed. Incomplete command lines consisting only of
 qualifiers may be used to establish defaults for the remainder
 of the compilation.

 The following example illustrates prompting mode and the
 informational messages that are displayed.
 $ cc
 CC> /define=(check=1,debug=1)
 CC> prog1
 CC> prog2,prog3
 CC> prog4+prog5+prog6-
 _CC> ,prog7

 To return to DCL, enter Ctrl/Z.
The previous example equates to the following DCL
 commands:
 $ cc/define=(check=1,debug=1) prog1
 $ cc/define=(check=1,debug=1) prog2,prog3
 $ cc/define=(check=1,debug=1) prog4+prog5+prog6,prog7

 1.3.3 Indirect Command Files
 The compiler can receive input from an indirect command
 file. This file, which has a default file extension CMD,
 contains the same type of information as required by the
 prompting mode. The only difference is that there is no
 Ctrl/Z terminating the input. The compiler stops processing
 command lines when the end-of-file is reached.

 You can invoke an indirect command file in one of two ways:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (5 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 .
 Specify the indirect command-file specification preceded
 by the at sign (@) character. (Not available on RT-11
 systems.)
 .
 Specify the indirect command file specification as a value
 to the /COMMAND qualifier.

 You can use either method in the command line or in
 prompting mode.

 Note

 You cannot specify indirect files using the at sign
 (@) character on RT-11 command lines; use the
 /COMMAND qualifier.

 You may also use preceding qualifiers to establish defaults
 for the remainder of the compilations in the command file.
 Within an indirect command file, the exclamation point (!)
 delimits a comment that extends from ! to the end of the
 line. Indirect command-file invocations may be nested. The
 maximum nesting depth is determined by available resources
 in the host environment.

 The following example illustrates the use of PDP-11 C
 indirect command files:
 $ type myccsetup.cmd
 ! Set up file for compilation under PDP-11 C
 /DEFINE=("CHECK=1","DEBUG=1") ! Enable CHECK and DEBUG variants
 /INCLUDE_DIRECTORY=PROJ$:[HEADERS]
 /LIST
 /ENVIRONMENT=(NOFPU,NOPIC)
 $ type build.cmd
 @MYCCSETUP
 PROG1
 PROG2,PROG3
 PROG4+PROG5+PROG6-

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (6 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 ,PROG7
 $ cc @build

 The effect of executing the previous command yields the
 following results for the last two lines in the BUILD.CMD
 command:
 CC/DEFINE = ("CHECK=1", "DEBUG=1")/INCLUDE_DIRECTORY=PROJ$:[HEADERS]-
 /LIST/ENVIRONMENT=(NOFPU,NOPIC)-
 PROG1,PROG2,PROG3,PROG4+PROG5+PROG6,PROG7

 1.3.4 The PDP-11 C Command Qualifiers
 The following list shows all the command qualifiers and their
 defaults. A description of each qualifier follows the list.
 Command Qualifiers Default
 /COMMAND=file-spec /COMMAND
 /[NO]DEFINE[=(definition list)] /NODEFINE
 /ENVIRONMENT=([NO]FPU, [NO]PIC) /ENVIRONMENT=(FPU,NOPIC)
 /[NO]ERROR_LIMIT /ERROR_LIMIT=30
 /[NO]INCLUDE_DIRECTORY=(pathname [, . . .])
 /NOINCLUDE_DIRECTORY
 /[NO]LIST[=file-spec] /NOLIST
 /[NO]MACRO /NOMACRO
 /[NO]MEMORY /NOMEMORY
 /[NO]MODULE /MODULE
 /[NO]OBJECT[=file-spec] /OBJECT
 /SHOW[=(option, . . .)] (See description for default values)
 /[NO]STANDARD[=(option, . . .)] /NOSTANDARD
 /[NO]TERMINAL /TERMINAL=NOSOURCE
 /[NO]TITLE /NOTITLE
 /[NO]UNDEFINE[=(undefine list)] /NOUNDEFINE
 /[NO]WARNINGS[=(option, . . .)] /WARNINGS
 /[NO]WORK_FILE_SIZE /NOWORK_FILE_SIZE

 Note

 Using [NO] before any qualifier prohibits specifying
 any values for the qualifier.

 You can place command qualifiers either on the command

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (7 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 line itself or on individual file specifications. If placed on a
 file specification, the qualifier affects only the compilation
 of the specified source file and all subsequent source files
 in the compilation unit. If placed on the command used to
 invoke PDP-11 C, the qualifier affects all source files in all
 compilation units unless it is overridden by a qualifier on an
 individual file specification.

 Several command qualifiers accept a comma-separated
 list of values enclosed within parenthesis. However on
 RT-11 systems, RT-11 factors commands that contain
 parenthesis resulting in an incorrect or inappropriate PDP-
 11 C command line. Use left and right curly braces ({ }) in
 place of left and right parenthesis on RT-11 command lines.

 The rest of this section describes the command qualifiers.

 /COMMAND=file-spec
 Specifies an indirect command file. You must specify a
 file-spec value. The default file type is CMD. Refer to
 Section 1.3.3 for more information on command files.

 /[NO]DEFINE=(" identifier[(param, . . .)] token-string "
 [, . . .])

 /[NO]UNDEFINE=(" identifier " [, . . .])
 Performs, from the command line, the same functions
 performed by the #define and #undef preprocessor
 directives. The /DEFINE qualifier defines a token string
 or macro to be substituted for every occurrence of a given
 identifier in the compilation units; /UNDEFINE cancels a
 previous definition. When /DEFINE is specified multiple
 times for a compilation unit, only the last /DEFINE is
 effective; the same is true for the /UNDEFINE qualifier.
 When both /DEFINE and /UNDEFINE are specified for a
 compilation unit, /DEFINE is evaluated before /UNDEFINE.

 Each string literal specified with the /DEFINE and
 /UNDEFINE qualifiers is processed as though the string
 (without quotes) was specified as the right-hand portion
 of the #define and #undef preprocessor directives,
 respectively. Thus, the following command-line qualifiers
 are equivalent to the preprocessor directives that follow them:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (8 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 /DEFINE=("DUMP","CLEAR(x) (x=0)")
 /UNDEFINE=("DEBUG","TEST")
 # define DUMP
 # define CLEAR(x) (x=0)
 # undef DEBUG
 # undef TEST

 You can specify quotation marks within a macro definition by
 placing one quotation adjacent to another. For instance, the
 following command-line qualifier and preprocessor directive
 are equivalent:
 /DEFINE="COMPLAIN (fprintf(stderr, ""Unrecognized option\n""))"
 # define COMPLAIN (fprintf(stderr, "Unrecognized option\n"))

 The /UNDEFINE qualifier is useful for undefining the
 predefined PDP-11 C preprocessor constants. For example,
 if you use a preprocessor constant (such as _ _pdp11c or
 _ _PDP11C) to conditionally compile segments of PDP-11 C
 code, you can undefine that constant to see how the portable
 sections of your program execute. Consider the following
 program:
 #include <stdio.h>
 int main()
 {
 #ifdef __PDP11C
 printf("I'm being compiled with PDP-11 C.");
 #else
 printf("I'm being compiled on some other compiler.");
 #endif
 }

 For example, on RSTS/E systems, output from the program is
 as follows:
 $ cc exampl.c
 $ link/cc exampl.obj
 $ run exampl.tsk
 I'm being compiled with PDP-11 C.
 $ cc/undefine="__pdp11c" exampl
 $ link/cc exampl.obj
 $ run exampl.tsk
 I'm being compiled on some other compiler.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (9 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Since /DEFINE and /UNDEFINE are not part of the source
 file, they are not associated with a listing line number or
 source line number. Therefore, when an error occurs in
 a command line definition, the message displayed at the
 terminal does not indicate a line number. In the listing
 file, these diagnostic messages are printed after the source
 listing in the order that they were encountered. When the
 expansion of a definition causes an error at a specific source
 line in the program, the diagnostics-both at the terminal and
 in the listing file-are associated with that source line.

 A command line containing the /DEFINE and the
 /UNDEFINE qualifiers can be 256 characters long.
 Continuation characters cannot appear within quotes or
 they will be included in the token stream. The length of a
 command line cannot exceed the maximum length allowed
 by DCL.

 The defaults are /NODEFINE and /NOUNDEFINE.

 /ENVIRONMENT=([NO]FPU, [NO]PIC)
 Specifies the type of environment in which the generated code
 is to execute. You can specify the following values: [NO]FPU,
 [NO]PIC. If you specify this qualifier, you must provide at
 least one value, or an error message will be generated.

 If you specify or default to FPU, floating-point processor
 instructions will be generated as appropriate. If you specify
 NOFPU, floating-point processor instructions will not be
 generated.

 Do not specify FPU if you are going to link against the
 Extended Instruction Set (EIS) run-time library. If any
 of the modules are compiled for FPU, you should link
 to the FPU run-time library. For more information, see
 Section 1.5.8.1.

 If you specify PIC, PDP-11 C produces position-independent
 code. If you specify or default to NOPIC, code may be
 generated that is not position-independent. For information
 about position-independent code, see the discussion in the
 PDP-11 MACRO-11 Language Reference Manual .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (10 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 The default is /ENVIRONMENT=(FPU,NOPIC)

 /[NO]ERROR_LIMIT[=value]
 Specifies the maximum error count. If the number of errors
 encountered (exclusive of informationals and warnings)
 exceeds the integer value specified, the compilation is
 aborted without further source code analysis. The default is
 /ERROR_LIMIT=30. If you specify the /NOERROR_LIMIT
 qualifier, compilation proceeds regardless of the number of
 errors encountered.

 /[NO]INCLUDE_DIRECTORY=(pathname [, . . .])
 Provides an additional level of search for include files. Each
 pathname argument can be either a logical name or a legal
 directory specification.

 The forms of inclusion affected are the # include `` file-
 spec'' and # include <file-spec> forms. The quoted form is
 generally used with user-defined header files. The bracketed
 form is generally used with header files supplied with PDP-
 11 C.

 The default is /NOINCLUDE_DIRECTORY.

 /[NO]LIST[=file-spec]
 Directs the compiler to produce a listing file. You must
 specify this qualifier to get any type of listing. See the /SHOW
 qualifier for an explanation of the options available for the
 contents of the listing file.

 When /LIST is in effect, the compiler, by default, creates a
 listing file with the same name as the source file and with the
 LST file extension. If you include a file specification with the
 /LIST qualifier, the compiler uses that specification to name
 the listing file.

 The default is /NOLIST.

 /[NO]MACRO[=file-spec]
 Specifies a MACRO-11 file specification. If you do not specify
 a file name, the default file name is used, which is the file
 name of the last file in the compilation unit. If you do not
 specify a file type, the type MAC is used. A legal MACRO-11

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (11 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 source program corresponding to the translation of the source
 program is placed in the specified file.

 The /MACRO qualifier differs from the /SHOW=MACHINE_
 CODE qualifier as follows: the /MACRO qualifier places a
 MACRO-11 source program in a separate file rather than
 the listing file. The MACRO-11 source program may be
 assembled under MACRO-11 without modification. The
 /SHOW=MACHINE_CODE qualifier places a machine code
 listing similar to the list file output produced by MACRO-11
 into the listing file.

 The default is /NOMACRO.

 /[NO]MEMORY[=value]
 You use this qualifier to determine the amount (in 8Kb
 regions) of extended memory to allocate in a PDP-11
 host environment. This qualifier is ignored in VMS host
 environments and on PDP-11 host systems that do not
 support the I- and D-space feature.

 This switch only affects compiler performance. The specified
 integer value determines the number of 8192-byte regions
 that are to be allocated. You can specify an integer between
 0 and 511 to allocate up to the 4Mb architectural limit of
 the PDP-11. If the specified amount of extended memory
 is not available, the largest number of available 8192-byte
 regions are allocated. In general, the greater amount of
 extended memory allocated, the less work file activity and the
 faster the performance of the compiler. However, using more
 extended memory reduces the amount of remaining memory
 for other tasks or jobs while PDP-11 C is operating. The
 default value is /MEMORY=8. The /NOMEMORY qualifier
 is equivalent to /MEMORY=0.

 Note

 If this qualifier is used, it must be specified with the
 first compilation unit.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (12 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 /[NO]MODULE=(identifier | " string " [,identifier | " string "])
 The module identifier is the name used by the object librarian,
 and the identifier appears in object libraries, object librarian
 listings, and link maps. The last-file-spec-name is the last
 file name specified for a given compilation unit (that is, the
 last file in a list separated by plus (+) signs). By default,
 PDP-11 C uses the last name as the module identifier. The
 module qualifier can be used to override the default module
 identifier or the module identifier specified by the #module
 or #pragma module preprocessor directives. This qualifier
 will accept at most two identifier or string values. If this
 qualifier is asserted, the user must supply at least the first
 value.

 The default is /MODULE=(last-file-spec-name, ``V1.0'').

 /[NO]OBJECT[=file-spec]
 Directs the compiler to produce an object module. By default,
 /OBJECT creates an object module file with the same name
 as the last source file of a compilation unit and with the
 OBJ file extension. If you include a file specification with
 /OBJECT, the compiler uses that specification instead. See
 Section 1.3.1 for more information about file specifications.

 The compiler executes faster if it does not have to produce an
 object module. Use the /NOOBJECT qualifier when you need
 only a listing of a program or when you want the compiler to
 check a source file for errors.

 The default is /OBJECT.

 /SHOW=(option, . . .)
 The qualifier /SHOW sets or cancels listing options. You must
 use the /LIST qualifier with the /SHOW qualifier to select or
 cancel any of the following options:

 Option Usage

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (13 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 ALL The ALL option prints all listing infor-
 mation.
 [NO]CONDITIONALS The CONDITIONALS option causes con-
 ditional program segments that were
 not compiled (due to #if type preproces-
 sor directives) to appear in the listing.
 Specifying NOCONDITIONALS causes
 conditional program segments that were
 not compiled to be omitted in the listing.
 The default is CONDITIONALS.
 [NO]EXPANSION The EXPANSION option prints final
 macro expansions in the program listing.
 When you specify this option, the macro
 nesting level of the last macro expanded
 on the line prints next to each line.
 The NOEXPANSION option is the default.
 [NO]INCLUDE The INCLUDE option prints the contents
 of #include files in the program listing.
 The NOINCLUDE option is the default.
 [NO]INTERMEDIATE The INTERMEDIATE option prints all
 intermediate and final macro expansions
 in the program listing.
 The NOINTERMEDIATE option is the
 default.
 [NO]MACHINE_CODE The MACHINE_CODE option directs the
 compiler to list the generated machine
 code in the listing file.
 The NOMACHINE_CODE option is the
 default.
 NONE The NONE option creates an empty
 listing file, with only the header.
 [NO]SOURCE The SOURCE option places the source
 program statements in the program
 listing.
 The SOURCE option is the default.

 /[NO]STANDARD[=(option, . . .)]
 Determines what language features will be allowed. If you
 specify the ANSI option, this instructs the compiler to compile
 and generate code according to ANSI C Standard syntax and
 semantics. If you specify /STANDARD without an option, the
 default is /STANDARD=ANSI.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (14 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 The default is /NOSTANDARD, which implies PDP-11 C
 native syntax and semantics.

 When specifying the default /NOSTANDARD qualifier,
 PDP-11 C allows the use of $ in identifier names. However,
 PDP-11 C does not support the use of $ in identifier names
 when specifying the /STANDARD=ANSI qualifier.

 /[NO]TERMINAL[=[NO]SOURCE]
 Determines whether compiler messages are displayed
 at the terminal. If you specify either /TERMINAL or
 /TERMINAL=NOSOURCE, compiler messages are displayed
 on the user terminal or in the batch log, but associated user
 source text is not displayed. If you specify /NOTERMINAL,
 only the summary message is displayed on the user terminal
 or in the batch log.

 If you specify /TERMINAL=SOURCE, the compiler displays
 the source line of each error, as well as the compiler messages
 associated with the error.

 The default is /TERMINAL=NOSOURCE.

 /[NO]TITLE=["]identifier["]
 Controls the compiler-produced output list header for the
 program file. The identifier is the list title name for a
 given compilation unit. This list title name will override
 the #pragma list title .

 This qualifier, if asserted, must be supplied with a string
 value. Use quotation marks around the identifier to retain
 lowercase characters or if the identifier contains a space
 character. By default, if no quotation marks are used, the
 identifier is converted to uppercase.

 The default is /NOTITLE.

 /[NO]WARNINGS[=(option, . . .)]
 Controls whether the compiler prints warning diagnostic
 messages, informational diagnostic messages, neither, or both.
 The default qualifier, /WARNINGS, causes the compiler to
 print all diagnostic messages. The /NOWARNINGS qualifier

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (15 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 suppresses both the informational and the warning messages.
 Note, however, that error and fatal messages cannot be
 suppressed.

 The two options are as follows:

 Option Usage

 NOINFORMATIONALS The NOINFORMATIONALS option causes
 the compiler to suppress informational
 messages.
 NOWARNINGS The NOWARNINGS option causes the
 compiler to suppress all warning mes-
 sages.

 The informational message, SUMMARY, cannot be sup-
 pressed with /NOWARNINGS or /WARNINGS=NOINFORMATIONALS.

 The default is /WARNINGS.

 /[NO]WORK_FILE_SIZE=value
 The value is an integer value between 1 and 65535
 representing the number of 512-byte disk blocks to allocate
 for the work file. This qualifier is ignored on VMS systems.
 If the /WORK_FILE_SIZE qualifier is not specified, a default
 work file size of 2048 is used. The size of the work file
 determines the PDP-11 C compiler's capacity for processing
 source input. Note that the /MEMORY qualifier affects both
 the performance and capacity of the PDP-11 C compiler.

 Specifying the WORK_FILE_SIZE qualifier with large values
 can impact compiler performance in varying degrees. See
 the Implementation Notes in Chapter 8 of this guide for more
 detail.

 The work file is placed on the SY: device. PDP-11 C first
 attempts to open the work file contiguously. If insufficient
 contiguous disk storage is available, PDP-11 C then attempts
 to open the work file using noncontiguous disk storage. If

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (16 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 insufficient non-contiguous disk storage is available, PDP-11
 C issues a diagnostic message and aborts. PDP-11 C does not
 extend the work file: if work file storage is exhausted during
 compilation, a diagnostic message is issued and PDP-11 C
 aborts.

 Note

 If this qualifier is used, it must be specified with the
 first compilation unit.

 1.3.5 Compiler Error Messages
 If there are errors in your source file when you compile
 your program, the PDP-11 C compiler signals these errors
 and displays diagnostic messages. Reference the diagnostic
 message, locate the error, and, if necessary, correct the
 error. Diagnostic messages displayed by PDP-11 C have the
 following format:
 The following messages pertain to file
 n: %PDP11C-s-ident, message-text

 The parts of this message are described as follows:

 %PDP11C
 Is the facility name of the PDP-11 C compiler. This portion
 indicates that the message is being issued by PDP-11 C.

 s
 Is the severity of the error, represented as follows:

 F Fatal error. The compiler stops executing when a fatal error
 occurs and does not produce an object, listing, or macro file.
 You must correct the error before you can compile the program.
 E Error. The compiler continues, but does not produce an object
 or macro file. You must correct the error before you can
 successfully compile the program. Produces a listing file, if
 specified.
 W Warning. The compiler produces an object module and macro
 file, if specified. It attempts to correct the error in the state-

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (17 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 ment, but you should verify that the compiler's action is ac-
 ceptable. Otherwise, your program may produce unexpected
 results.
 I Information. This message usually appears with other mes-
 sages to inform you of specific actions taken by the compiler. No
 action is necessary on your part.

 ident
 Is the message identification. This is a descriptive abbrevia-
 tion (mnemonic) of the message text.

 message-text
 Is the compiler's message. In many cases, it consists of more
 than one line of output. A message generally provides you
 with enough information to determine the cause of the error
 so that you can correct it.

 file
 The name of the source file in which the error occurred.

 n
 Gives you the number of the line where the error occurs. The
 number is relative to the beginning of the file specified by file .
 You can use the #line preprocessor directive to change both
 the line number and name that appear in the message.

 The messages produced by the PDP-11 C compiler are listed
 in Appendix A.

 The compiler command gives you control over the display
 of messages. The /NOWARNINGS qualifier, discussed
 previously, suppresses warning messages generated by the
 compiler.

 1.3.6 Compiler Listings
 A compiler listing provides information that can help you
 debug your PDP-11 C program. To generate a listing file,
 specify the /LIST qualifier when you compile your PDP-11 C
 program.

 Under DCL on RSX-11M/M-PLUS systems:
 $ cc/list

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (18 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Under MCR on RSX-11M/M-PLUS systems:
 > cc/list

 Under CCL on RSTS/E systems:
 $ cc/list

 On RT-11 systems:
 . cc/list

 On VAX systems:
 $ pdpcc/list

 By default, the name of the listing file is the name of the
 source program with a file type of LST. You can include a file
 specification with the /LIST qualifier to override this default.

 When used with the /LIST qualifier, the compiler command
 qualifier /SHOW supplies additional information in the
 compiler listing. See Section 1.3.4 for a description of each
 qualifier's function.

 If the compiler command line contains the /LIST qualifier
 but does not contain the /SHOW qualifier, you are given the
 default listing. The default listing includes the following:

 .
 Margin information
 .
 PDP-11 C source text
 .
 Errors encountered during the compilation
 .
 Command line used to invoke the compiler

 The left-hand margin of the source listing produced by the
 PDP-11 C compiler contains several items of information,
 arranged into fields in the following format:
 nnnnn i x mm

 nnnnn
 Is the compiler-generated listing line number; it starts at

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (19 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 1 and is incremented by one for each line in the function,
 including lines read from included files (whether or not the
 /SHOW=INCLUDE qualifier was specified in the command
 line). All lines appearing before a function that do not belong
 to another function are included in the line numbering of the
 function.

 i
 Is the level of nesting of lines read from included files; this
 field is present only if /SHOW=INCLUDE is specified on the
 command line. Level 0, which appears as a blank, indicates
 lines read from the source file, or files, specified on the
 command line.

 x
 If the source line is ignored by the compiler as a result of the
 evaluation of a previous #if , #ifdef , or #ifndef preprocessor
 directive, this field appears as an ``x''; otherwise it is blank.

 mm
 Is the level of nesting of the last macro expanded in the
 line; this field is present only if the /SHOW=EXPANSIONS
 or /SHOW=INTERMEDIATE qualifier is specified on the
 command line. Level 0 corresponds to the original source line
 and appears as a blank. When this field is nonzero, however,
 the fields ``nnnnn'', ``i'', and ``ss'' all appear as blanks.

 In all cases, the numbers listed are right justified in their
 fields with no leading zeros.

 Note

 The spacing within the compiler listings in this
 chapter may not be consistent with the spacing in
 actual compiler listings. These listings are condensed
 to fit on the page.

 Example 1-1 shows the default compiler listing.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (20 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Key to Example 1-1:

 1 The name of the module appears at the top left of the
 listing, followed by the title string, the right-most 38
 characters of the name of the source file, the version of
 the compiler, and the page number. The module name
 is specified with the #module or #pragma module
 preprocessor directive (see item 5) or is defaulted from
 the file name. The title string (if any) is specified with the
 #pragma list title preprocessor directive (see item 4).
 2 The module message identification appears on the second
 line of the listing followed by the listing subtitle string and
 the date and time of compilation. The module message
 identification is specified with the #module or #pragma
 module preprocessor directive or is defaulted to ``V1.0.''
 The subtitle string is specified with the #pragma list
 subtitle preprocessor directive.
 3 The compiler generates listing line numbers. The
 generated line number is reset to zero at the end of each
 function.
 4 A title and subtitle string may be specified with the
 #pragma list title and #pragma list subtitle
 preprocessor directives, respectively. The title string has
 effect for the entire compilation unit and may be specified
 only once. A subtitle string has effect starting with the
 next page of the listing and may be specified any number
 of times.
 5 The internal object module title and message identification
 used by the librarian and linker or task builder may
 be specified with the #module or #pragma module
 preprocessor directive. The default object module title is
 taken from the first six characters of the object file name;
 the default object module message identification is ``V1.0.''
 6 Compiler messages are generally cited against a point of
 interest in the source program. To indicate the point of
 interest, a digit is placed on the following line immediately
 beneath the point of interest. The corresponding message
 follows preceded by the point of interest digit, followed
 by an indication of the file specification and line number
 (relative to the start of the file, not the listing line number)
 of the source file to which the message pertains.
 7 Source lines that are excluded from the compilation with
 the #if preprocessor directive appear with an X in the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (21 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 left margin. Such lines may also be excluded from the
 listing with the /SHOW=NOCONDITIONALS qualifier.
 8 A summary of the number of informational, warning,
 and error messages at the bottom of the listing, followed
 by the command used to compile the module.

 Example 1-2 shows all compiler listing options.

 Key to Example 1-2:

 1 Source lines included with the #include preprocessor di-
 rective appear in the listing with the /SHOW=INCLUDE
 and /SHOW=ALL qualifiers. The nesting level of the
 include file appears in the left margin.
 2 Final macro expansions are shown with the /SHOW=EXPANSION
 qualifier. Intermediate and final macro expansions
 are shown with the /SHOW=INTERMEDIATE and
 /SHOW=ALL qualifiers. Regardless of qualifiers specified,
 the final macro expansion is always shown for a line that
 has an associated compiler message. The macro nesting
 level of the last macro expanded on the line appears in
 the left margin.
 3 The macro ERROR_RECOVERY is defined as TRUE
 through the command line (see item 8). The intermediate
 expansion to TRUE is shown in the listing before the final
 expansion to 1.
 4 A machine code listing similar in format to that produced
 by MACRO-11 is included in the listing after each
 function with the /SHOW=MACHINE and /SHOW=ALL
 qualifiers.
 5 The relocatable object module memory location and the
 machine code instructions are listed.
 6 The assembly language code is shown beside its
 corresponding machine code instruction.
 7 Comments annotate the assembly language listing and
 correlate the assembly language statements with the
 PDP-11 C source language statements.
 8 The /DEFINE qualifier is used to define the ERROR_
 RECOVERY macro and drive the conditional compilation
 of the module.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p17.decw$book (22 of 22)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.4 Copying Files Among Target Environments
 To copy text and object files among RSTS/E, RSX, RT-11,
 or VMS systems you can use DECnet or physical media.
 For more information about DECnet, refer to the DECNET
 documenation for your operating system.

 Use Table 1-1 and the following sections to determine the
 appropriate tools to transfer files using physical media. You
 may need to refer to the specific documentation for more
 detail.

 1.4.1 File Transfer (FIT) Program
 FIT transfers files between RSTS/E directory-structured
 devices and RT-11 directory-structured devices.

 Using FIT, you can:

 .
 Transfer files between RSTS/E-structured devices and
 RT-11-structured devices
 .
 List the directory of an RT-11-structured device,
 including RX01 and RX02 flexible diskettes
 .
 Delete files on an RT-11-structured device
 .
 Initialize (zero) an RT-11-structured device
 .
 Compress (squeeze) the files on an RT-11-structured
 device

 To run the FIT program, use the following syntax:
 [output[/switch]=]input[/switch]

 The following is a sample FIT session:
 $ run auxlib$:fit
 FIT V9.0-14 RSTS V9.6-11 GNAT
 FIT> dl0:*.obj/rt11/li
 Directory of DL0:??????.OBJ (RT11 Format)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p20.decw$book (1 of 3)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Name .Typ Size Date RT Pos
 COINIT.OBJ 1 06-Jan-89 RT11 68
 COFINI.OBJ 1 06-Jan-89 RT11 69
 PRINTF.OBJ 1 06-Jan-89 RT11 70
 WRITE .OBJ 1 06-Jan-89 RT11 71
 COCSAL.OBJ 1 06-Jan-89 RT11 72
 COCSAV.OBJ 1 06-Jan-89 RT11 73
 COMAIN.OBJ 1 06-Jan-89 RT11 78
 COMAI .OBJ 1 06-Jan-89 RT11 79
 CRT .OBJ 5 06-Jan-89 RT11 80
 XBL201.OBJ 2 06-Jan-89 RT11 185
 XBL .OBJ 2 06-Jan-89 RT11 260
 Total of 17 blocks in 11 files in DL0:
 Total of 15869 free blocks in DL0:
 FIT> *.*=dl0:write.obj/rt11

 To exit the FIT program, enter Ctrl/Z. For more information
 on the FIT program, see the RSTS/E Utilities Reference
 Manual .

 1.4.2 File Transfer Utility (FLX)
 FLX allows you to use foreign volumes (not in Files-11
 format) in DOS-11 or RT-11 format. FLX converts the
 format of a file to the format of the volume to which the file
 is being transferred.

 You can use FLX interactively or by means of an indirect
 command file. FLX allows only one level of indirect
 command file specification.

 You can invoke FLX by either specifying FLX or by
 specifying FLX and a command line. The format for
 entering FLX command lines follows:
 devicespec/sw=infile/sw, . . . ,infilen/sw

 For more information on FLX, see the RSX-11M/M-PLUS
 Utilities Manual .

 1.4.3 VMS EXCHANGE Utility
 The VMS EXCHANGE Utility performs file transfers and
 format conversions on RT-11 block-addressable volumes
 and DOS-format tapes. EXCHANGE recognizes RT-11

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p20.decw$book (2 of 3)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 volumes on any VMS block-addressable device. However,
 RT-11 supports only some of the devices that are recognized
 by EXCHANGE.

 For more information on the EXCHANGE Utility, see the
 VMS Exchange Utility Manual .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p20.decw$book (3 of 3)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.5 Linking a PDP-11 C Program
 After you compile a PDP-11 C source program or module,
 invoke the Linker or Task Builder to combine your PDP-
 11 system object modules into one executable image. The
 executable image can then be executed on a PDP-11 system
 or a VMS system with an RSX emulator. A source program
 or module cannot run until you link it with the Task Builder
 or Linker. The following sections show methods you can use
 to invoke the Linker or Task Builder.

 The RT-11 Linker and RSX Task Builder are system
 programs that link relocatable object modules to form an
 executable task image. Use the RT-11 Linker to build tasks
 that execute on the RT-11 operating system or to build tasks
 on the RSTS/E system that execute under the RT-11 Run-
 Time System. Use the RSX Task Builder to build executable
 tasks for the following systems.

 .
 RSX-11M/M-PLUS
 .
 Micro /RSX
 .
 RSX-11S
 .
 VAX-11 RSX operating systems
 .
 Tasks built on RSTS/E operating systems that execute
 under the RSX Run-Time System

 When you execute the LINK command or TKB command,
 the Task Builder or RT-11 Linker performs the following
 functions:

 .
 Resolves local and global symbolic references in the object
 code
 .
 Assigns values to the global symbolic references

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (1 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 .
 Signals an error message for any unresolved symbolic
 reference
 .
 Allocates memory space for the executable image

 The Task Builder also resolves references to resident common
 blocks and resident libraries.

 The object modules to be linked can come from user-specified
 input files, user libraries, or system libraries. The Task
 Builder resolves references to symbols defined in one module
 and referred to in other modules. Should any symbols remain
 undefined after all user-specified input files are processed, the
 Task Builder automatically searches the appropriate system
 object library to attempt to resolve them. For additional
 information about libraries, refer to the Section 1.5.8.

 You can also use the Task Builder to build tasks with overlay
 structures. For additional information about the Task Builder
 and Task Builder options, refer to the RSX-11M/M-PLUS
 and Micro /RSX Task Builder Manual or the RSTS/E Task
 Builder Reference Manual and Section 1.5.9.

 1.5.1 Linking a Program on RSX Systems
 Use the DCL LINK command to invoke the Task Builder.
 For example, to link the PDP-11 C program PROG1 on
 RSX, use the following command line:
 $ link prog1,lb:[1,1]cfpursx.olb/library

 You can also use the following format to link a program,
 using a command file as follows:
 LINK @command-file

 For example, if you want to link using the command file
 PROG1.CMD, you enter the following command:
 $ link @prog1.cmd

 Alternatively, you can invoke the Task Builder (under either
 the DCL or MCR command line interpreters) by typing a
 RUN command in the following format:
 $ run tkb

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (2 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Or, if your system manager has installed TKB, you can enter
 the following:
 $ tkb

 In either case, after you press the Return key, the Task
 Builder prints the TKB> prompt. You then enter the TKB
 command.

 After you press the Return key, the Task Builder prints
 another TKB> prompt. You then:

 1. Enter additional input files, if any.
 2. Enter a line containing only two slashes (//) to tell the
 Task Builder to create a task image and to exit.
 3. Press the Return key.

 See the RSX-11M/M-PLUS and Micro /RSX Task Builder
 Manual for detailed instructions.

 1.5.2 Linking a Program on RSTS/E Systems
 There are two ways you can link programs on RSTS/E. You
 can invoke the RSX Task Builder or the RT-11 Linker. The
 following sections describe these two methods.

 1.5.2.1 Invoking the RSX Task Builder on RSTS/E
 There are three ways to invoke the RSX Task Builder on
 RSTS/E. You can invoke the Task Builder by using the DCL
 LINK command as follows:
 $ link/cc prog1

 You can run the Task Builder by entering a RUN command
 in the following format:
 $ run tkb

 Or, if your system manager has installed TKB as a CCL
 command, you can enter the following:
 $ tkb

 In each case, after you press the Return key, the Task
 Builder prints the TKB> prompt. You then enter the TKB
 command.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (3 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 After you press the Return key, the Task Builder prints
 another TKB> prompt. You then:

 1. Enter additional input files, if any.
 2. Enter a line containing only two slashes (//) to tell the
 Task Builder to create a task image and to exit.
 3. Press the Return key.

 The following example shows how to taskbuild FOO.C on
 RSTS/E, using the taskbuilder FOO.CMD and FOO.ODL files.

 FOO.C contains the source code for FOO.C, which copies the
 contents of one file to another file. FOO.ODL is the overlay
 description file.
 /*Sample FOO.C program.*/
 #include <stdio.h>
 #include <errno.h>
 int main ()
 {
 FILE *in;
 FILE *out;
 int c;
 char inname[133];
 char outname[133];
 printf ("\nInput file?:\n");
 gets(inname);
 printf ("\nOutput file?:\n");
 gets(outname);
 if (in = fopen(inname, "r"))
 {
 if (out = fopen(outname, "w"))
 {
 while ((c = getc(in)) != EOF)
 putc(c,out);
 fclose (out);
 }
 else
 {
 printf ("Could not open file %s\n",outname);
 printf ("Error was %d\n", errno);
 }
 fclose (in);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (4 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 }
 else
 {
 printf ("Could not open file %s\n",inname);
 printf ("Error was %d\n", errno);
 }
 }

 The following file, FOO.CMD, calls the file FOO.ODL.
 ;Sample TKB CMD file to build program FOO.C for RSTS/E
 SY:FOO=SY:FOO/MP
 //

 FOO.ODL is linked with FOO.C to produce an executable file.
 ;Sample TKB ODL file to build program FOO.C for RSTS/E
 .ROOT USER
 USER: .FCTR SY:FOO-LB:CEISRE/LB:$PRMXF-RMSROT-LIBR,RMSALL
 LIBR: .FCTR LB:CEISRE/LB
 @LB:RMS11S
 .END

 After compiling FOO.C, taskbuild the files using the following
 command:
 $ tkb @foo

 See the RSTS/E Task Builder Reference Manual for more
 detailed instructions.

 1.5.2.2 Invoking the RT-11 Linker on RSTS/E
 You can link your program on RSTS/E by invoking the
 RT-11 Linker. You invoke the RT-11 Linker as follows:
 $ run link.sav

 See Section 1.5.3 for additional information on the RT-11
 Linker.

 1.5.3 Linking a Program on RT-11 Systems
 You can invoke the RT-11 Linker in either of two ways:
 using the Keyboard Monitor LINK command or using the
 RUN command.

 Using the Keyboard Monitor LINK command adheres to the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (5 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 following syntax, where ``filespec'' represents the file to be
 linked:
 LINK[/option . . .]filespec[/option . . .][, . . . filespec[/option . . .]]

 or
 LINK[/option . . .]
 FILE? filespec[/option . . .][, . . . filespec[/option]]

 To run the Linker using the RUN command, use the
 following format:
 RUN SY:LINK

 The RUN command searches the system disk SY: for the
 LINK program and starts it executing. The Linker returns
 with a prompt when it is ready to accept input from your
 terminal:
 *

 For example, if you want the object files WINKN, BLNKN,
 and NOD linked into an executable memory image file, you
 can enter a succession of commands as follows:
 . run sy:link
 (From this point on the linker issues the * prompt.)
 * winkn,winkn=winkn,blnkn,nod

 To exit the linker, enter Ctrl/C.
Note that the Linker types the asterisk (
 *

) prompt whenever
 it awaits user input. The result in the example is two
 files: WINKN.SAV, an executable memory image, and
 WINKN.MAP, a load map of the memory image file. Both
 are placed on the default device DK:.

 When invoked with the RUN command either with or
 without arguments, the RT-11 Linker accepts the first
 command string in the form:
 [bin-filespec][,map-filespec][,stb-filespec] = [infiles-list]

 To make a job an RT-11 virtual job, use the $VIRTUAL$JOB
 macro in one of the routines in the job:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (6 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 #include <RTSYS.H>
 $VIRTUAL$JOB

 The following is an example of how to link on RT-11:
 . run sy:link
 * test/m:3000/b:3000,test=test,sy:ceisrt

 To exit the linker, enter Ctrl/C.

 1.5.4 Linking a Program on VMS Systems
 To link a program using VAX-11 RSX on the VMS operating
 system, invoke the Task Builder as follows:
 $ mcr tkb

 The Task Builder can then be used as shown in Section 1.5.1.
The following example shows how to taskbuild TEST.C
 on VMS and RSX using the taskbuilder TEST.CMD and
 TEST.ODL files.

 TEST.C contains the source code which copies the contents of
 one file to another file.
 /*Sample TEST.C program.*/
 #include <stdio.h>
 #include <errno.h>
 int main ()
 {
 FILE *in;
 FILE *out;
 int c;
 char inname[133];
 char outname[133];
 printf ("\nInput file?:\n");
 gets(inname);
 printf ("\nOutput file?:\n");
 gets(outname);
 if (in = fopen(inname, "r"))
 {
 if (out = fopen(outname, "w"))
 {
 while ((c = getc(in)) != EOF)
 putc(c,out);
 fclose (out);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (7 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 else
 {
 printf ("Could not open file %s\n",outname);
 printf ("Error was %d\n", errno);
 }
 fclose (in);
 }
 else
 {
 printf ("Could not open file %s\n",inname);
 printf ("Error was %d\n", errno);
 }
 }

 The following file, TEST.CMD, calls the file TEST.ODL.
 ;Sample TKB CMD file to build program TEST.C for RSX or VMS
 SY:TEST/CP=SY:TEST/MP
 //

 TEST.ODL is linked with TEST.C to produce an executable
 file.
 ;Sample TKB ODL file to build program TEST.C for RSX or VMS
 .ROOT USER
 USER: .FCTR SY:TEST-LB:[1,1]CEISRSX/LB:$PRMXF-RMSROT-LIBR,RMSALL
 LIBR: .FCTR LB:[1,1]CEISRSX/LB
 @LB:[1,1]RMS11S
 .END

 After compiling TEST.C, taskbuild the files using either of the
 following commands on VMS:
 $ mcr tkb @test

 or
 $ mcr tkb
 TKB> @TEST

 1.5.5 Task Builder Command-Line Elements
 When you invoke the Task Builder, certain files must be
 present, and you can use various qualifiers. The following
 sections describe the files that you need for task building and
 the qualifiers that you can specify.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (8 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 1.5.5.1 Creating CMD and ODL Files for Task Building
 Before you link a PDP-11 C object file, you may want to
 produce a command (CMD) file and an overlay description
 file (ODL).

 The following is an example of a CMD file that the Task
 Builder uses to produce a TSK file:
 SY:XBL201/CP=SY:XBL201/MP
 //

 For more information on CMD files, see the RSX-11M/M-
 PLUS and Micro /RSX Task Builder Manual or the RSTS/E
 Task Builder Reference Manual .

 The following is an example of an ODL file that is used by the
 CMD file for an RSX system:
 .ROOT USER
 USER: .FCTR SY:XBL201-LIBR
 LIBR: .FCTR LB:[1,1]CEISRSX/LB
 .END

 For information about overlaying, see the Overlay Capability
 and Overlay Loading Methods chapters in the RSX-11M
 /M-PLUS and Micro /RSX Task Builder Manual , or the
 appropriate sections about overlaying in the RSTS/E Task
 Builder Reference Manual .

 1.5.5.2 Command-Line Elements in CMD Files
 The elements that you specify on the first line in the CMD
 file are as follows:
 task-file/qualifier,map-file/qualifier,infiles-list/qualifier

 task-file
 The file specification of the task-image output file. This file
 specification may be omitted if no task-image file is desired.
 If a specification is entered, only a file name is required; a file
 type value of TSK (EXE under VAX-11/RSX) is assumed
 if no file type is specified. Therefore, the following two
 commands are equivalent. Note, however, that no map file is
 created in either case.
 TKB> FILE1/FP=FILE1
 TKB> FILE1.TSK/FP=FILE1

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (9 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 map-file
 The file specification of the map output file. This file
 specification may be omitted if no task-image map file
 is desired. If a specification is entered, only a file name is
 required; a file type value of MAP is assumed if no file type
 is specified. On RSX systems, the map file is automatically
 spooled to the line printer. On some operating systems, the
 map file is automatically deleted after it is printed.

 infiles-list
 The list of input files that contains compiled PDP-11 C object
 modules. (This list may also contain compiled or assembled
 libraries and modules that were written in a language other
 than C, such as MACRO.) In many cases, this list contains
 only one file specification; however, when there is more
 than one specification, you must separate the individual
 specifications with commas. Only a file name is normally
 required; a file type value of OBJ is assumed.

 1.5.5.3 Task Builder Qualifiers
 You can use command qualifiers to modify the Task Builder's
 output, as well as to include the On-Line Debugging Tool
 (ODT). Task building output consists of an image file and an
 optional map file.

 The following list summarizes some of the most commonly
 used command qualifiers that you can specify in the CMD
 file. A brief description of each qualifier follows this list. For
 a complete list of task-building command qualifiers, see the
 sections about link qualifiers and TKB qualifiers in the RSX-
 11M/M-PLUS and Micro /RSX Task Builder Manual , or
 the section about task builder qualifiers in the RSTS/E Task
 Builder Reference Manual .

 Task-Image Output File Qualifiers
 You can use the following qualifiers for the task-image
 output file:

 /FP
 Specifies that the task uses the Floating-Point Processor
 (FP11) or floating-point microcode option (KEF11A).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (10 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 /DA
 Specifies that the system debugging aid ODT is to be included
 in the task.

 /CP
 Specifies that the task be checkpointable; must use for tasks
 using standard I/O or memory management (calloc, free, and
 so on).

 /ID
 Specifies that the task use I- and D-space. You can build
 an I- and D-space task on RSX-11M-PLUS (Version 4.3
 or higher), Micro /RSX (Version 4.3 or higher), and RSTS/E
 (Version 10.0 or higher).

 The PDP-11 C compiler generates code that will run in I-
 and D-space.

 /MU
 Specifies that multiple versions of the task may be run
 simultaneously. The read-only portions of the task are
 shared.

 Map File Qualifiers
 You can use the following qualifiers for the map file:

 /CR
 Specifies that a global cross-reference listing is to be appended
 to the map file.

 /SP
 Specifies that the map file is to be spooled to the line printer.

 Input-File Qualifiers
 You can use the following qualifiers for input files:

 /LB
 Specifies that the input file is to be a library file. (See
 Section 1.5.8.)

 /MP
 Specifies that the input file is an overlay description file. (See

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (11 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Section 1.5.9.)

 1.5.6 Task Builder Error Messages
 If the Task Builder detects any errors while linking object
 modules, it displays messages indicating the cause and
 severity of the error. If any fatal error conditions occur
 (that is, errors with a severity of
 *

 FATAL
 *

), the Task Builder
 does not produce an image file.

 Some common errors that occur during linking are as
 follows:

 .
 The input file has a file type other than OBJ, and no file
 type was specified on the command line.

 If you do not specify a file type, the Task Builder searches
 for a file that has a file type of OBJ by default. If the file
 is not an object file and you do not identify it with the
 appropriate file type, the Task Builder signals an error
 message and does not produce an image file.
 .
 You tried to link a nonexistent module.

 The Task Builder signals an error message if you misspell
 a module name or if the compilation contains fatal
 diagnostics.
 .
 A reference to a symbol name remains unresolved.

 An error occurs when you omit required module or
 library names from the command line and the Task
 Builder cannot locate the definition for a specified
 global symbol reference. In the following example on
 RSTS/E, a main program module, OCEAN.OBJ, calls
 the subprogram modules REEF.OBJ, SHELLS.OBJ,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (12 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 and SEAWD.OBJ, and the following LINK command is
 executed:
 $ link/cc ocean, reef, shells, lb:cfpure/lb

 Because SEAWD is not included in the link, the Task
 Builder signals the following error message:
 TKB -- *DIAG* -1 undefined symbols segment OCEAN
 SEAWD
 .
 The task has grown over the 32K limit.

 The error would be as follows:
 Segment OCEAN has addr overflow:allocation deleted

 If an error occurs when you link modules, you can often
 correct the error by reentering the command string and
 specifying the correct modules or libraries. If an error
 indicates that a program module cannot be located, you may
 be linking the program with the wrong PDP-11 C library.

 1.5.7 Storage Considerations
 Most storage for objects with the auto storage class specifier
 is allocated on the stack in PDP-11 C. Therefore, when
 linking, you should carefully consider how much automatic
 storage your program needs at any time. Since C is a stack
 language, many PDP-11 C programs require additional
 stack space beyond the default provided by TKB or the RT-
 11 Linker. If you do not allow for this, insufficient stack
 space will cause your program to behave unpredictably.

 As your program executes, it uses stack space for the
 following:

 .
 Automatic variables within subroutines
 .
 Parameters passed to subroutines
 .
 Subroutine return addresses and return values
 .
 Registers saved by subroutines (up to 54 bytes)
 .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (13 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Run-time library storage

 Determine the amount of storage you need to allocate by
 summing the space used for each item that uses stack
 space. Include items from both the main program and each
 subroutine. Each automatic variable, parameter, return
 address, and return value requires the following space on the
 stack:

 .
 char, short, pointer-2 bytes
 .
 long, float-4 bytes
 .
 double-8 bytes
 .
 arrays, structures-multiples of the variables involved

 As with variables, you need to calculate the size of the
 parameters, return addresses and values, and registers
 for each subroutine as well as for the main program.

 To set the size of the stack when using the RSX Task Builder
 on RSX or RSTS systems, use the STACK option to set the
 number of words of STACK used. The following Task Builder
 command file allocates 1024 bytes of space to the stack:
 SY:TEST/CP=SY:TEST/MP
 /
 STACK=512
 //

 On RT-11 systems, the stack is located above address 476. To
 set the stack size when using the RT-11 Linker on RT-11 or
 RSTS systems, use the /M and /B qualifiers to set the address
 of where the stack begins and to link the code above the
 stack. The following Linker commands allocate about 1024
 bytes of space to the stack:
 r link
 test/m:2500/b:2500,test=test,sy:ceisrt

 1.5.8 Library Usage
 Libraries consist of a collection of object modules. When the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (14 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Task Builder or Linker encounters a library specification, it
 searches the library for definitions of any of the currently
 undefined global symbols. The modules containing these
 definitions are included in the task image being built.

 Run-time libraries (RTL) contain functions and macros to
 perform input, output, and various task related to specific
 operating environments. For proper support, you must link
 your program to the run-time library developed for your
 operating system. Section 1.5.8.1 explains how to select and
 specify the run-time library.

 Disk and resident libraries are available for use with some
 operating systems. Disk Libraries are stored in files on
 disk. The Task Builder can make a disk library a physical
 part of a task image. From disk libraries, the Task Builder
 copies object modules into the task image of each task that
 references those modules.

 Resident Libraries are located in main memory and are
 shareable; that is, a single copy of each library is used by all
 tasks that refer to it. The Task Builder can make a resident
 library a logical part of a task image but not a physical part;
 that is, the Task Builder can link the library to a task image
 but cannot copy the library to a task image.

 Section 1.5.8.2 has more information about system disk and
 resident libraries. User disk and user resident libraries are
 described in Section 1.5.8.3.

 PDP-11 C provides a run-time library that can be installed
 as a supervisor-mode library on some systems. When
 a user task is linked to this library, a large part of the
 PDP-11 C run-time library resides in supervisor mode,
 thereby increasing the amount of user mode intruction
 space available for your program. Section 1.5.8.4 has more
 information about using the PDP-11 C supervisor-mode
 library. Refer to the RSX-11M/M-PLUS and Micro /RSX
 Task Builder Manual and the RSTS/E Task Builder
 Reference Manual for more information about supervisor-
 mode libraries.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (15 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 1.5.8.1 PDP-11 C Run-Time System Object Libraries
 You must link your program with the correct PDP-11 C
 run-time library (RTL), so that the proper run-time support
 is included. Each supported target operating system has two
 run-time libraries associated with it. The FPU run-time
 libraries support floating-point instructions, and the EIS
 run-time libraries support EIS instructions.

 When you compile your programs with /ENVIRONMENT=NOFPU,
 you may link them to either the FPU or EIS run-time
 library. However, if the target machine has floating-point
 hardware, it is suggested that you link to the FPU library.

 When you compile your programs with /ENVIRONMENT=FPU,
 you should link to the FPU run-time library. Though
 linking to the EIS library will work in some cases, certain
 RTL routines might encounter problems. The release notes
 indicate some, but not all, of the problems that you could
 encounter.

 The following table shows the different library names and
 the instruction set they require for each supported operating
 system.

 Instruction Set

 RSX
 Systems

 RSTS/E
 Systems

 RT-11
 Systems

 FPU (floating-point) CFPURSX CFPURE CFPURT
 EIS CEISRSX CEISRE CEISRT

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (16 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 For programs that use standard I/O, refer to the /CP
 taskbuilder switch and the input/output support package
 sections in the PDP-11 C Run-Time Library Reference
 Manual for additional information.

 1.5.8.2 Using System Libraries
 Each system has a system disk library. Consult with your
 system manager to determine which system resident libraries
 are available on your system. You can create your own user
 disk and resident libraries.

 Each RSX and RSTS/E system has a system disk library
 called LB:SYSLIB.OLB. In addition, each RSX system has
 available to it three system resident libraries. RSTS/E systems
 have one system resident library available that are pertinent
 to PDP-11 C.

 The system disk library is as follows:
 LB:[1,1]SYSLIB.OLB

 The Task Builder automatically searches the system disk
 library to see if any undefined global references remain after
 all the input files have been processed. If the definition of one
 of these undefined global symbols is found, the appropriate
 object module is included in the task being built.

 Consult your system manager to determine which of the
 following system resident libraries are available on your
 system.

 Library System Description

 FCSRES RSX only A shared library of commonly used FCS-
 11 input/output (I/O) routines
 FCSFSL RSX only A supervisor-mode File Control Services
 (FCS) library
 RMSRES RSX and

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (17 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 RSTS/E

 A shared library of RMS-11 I/O routines
 can be built in supervisor mode on RSX-
 11M-PLUS systems

 These system resident libraries are linked to a task by using
 the Task Builder option, as follows:

 For FCSRES:
 LIBR = FCSRES:RO

 For FCSFSL:
 RESSUP=FCSFSL/SV

 For RMSRES on a RSX system:
 LIBR = RMSRES:RO

 or
 RESSUP=LB:[3,54]RMSRES/SV:0

 For RMSRES on a RSTS/E system:
 LIBR = RMSRES:RO

 or
 RESSUP=RMS$:RMSRES/SV:0

 1.5.8.3 Creating User Libraries
 Using the Librarian Utility Program (LBR), you can
 construct your own PDP-11 C or assembly language disk
 libraries. You then access these libraries by using the
 library qualifier, /LB after the library name. Consult the
 RSX-11M/M-PLUS Utilities Manual and the RSTS/E
 Programmer's Utilities Manual for further information on
 the LBR.

 For example, if MATRIXLIB.OLB is a disk library containing
 matrix manipulation routines and PROG is the object file of a
 compiled PDP-11 C program that calls the matrix routines,
 you could enter the following command line for the Task

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (18 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 Builder:
 $ tkb prog/fp=prog,matrixlib/lb

 You can construct resident libraries using the taskbuilder.
 For more information, see the RSX-11M/M-PLUS and Micro /RSX Task Builder Manual .

 1.5.8.4 Using the supervisor-mode Library
 When a task uses supervisor-mode libraries the virtual
 address space available for the task is increased because the
 supervisor-mode library resides in a different address space.
 Refer to the RSX-11M/M-PLUS and Micro /RSX Task
 Builder Manual and the RSTS/E Task Builder Reference
 Manual for more information about supervisor-mode
 libraries.

 PDP-11 C provides a run-time library that can be installed
 as a supervisor-mode library on RSX-11 M-PLUS,
 Micro /RSX and RSTS/E systems that support the FPU
 processor. PDP-11 C does not provide a supervisor-mode
 library for the RT-11 operating system.

 When you link a user task to the run-time supervisor-
 mode library, the user mode instruction space available
 is substantially increased. This allows you to write larger
 programs without using overlays.

 Even more user mode instruction space can be made
 available when the run-time supervisor-mode library is
 used together with the system resident libraries, RMSRES
 for RSTS/E and RSX systems, and FCSFSL and FCSRES for
 RSX systems. (See Section 1.5.8.2 for more information about
 system resident libraries.)

 Since the run-time supervisor-mode library is Position
 Independent Code (PIC), it does not have to reside in APR0
 when other supervisor-mode libraries are linked with the
 task.

 The supervisor-mode library contains a subset of the
 CFPURSX.OLB or CRPURE.OLB PDP-11 C run-time
 libraries.The files for the supervisor-mode library include the
 following:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (19 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 .
 For RSX and Micro /RSX systems:
CCSMRX.TSK
 CCSMRX.STB
 .
 For RSTS/E systems:

 CCSMRE.TSK
 CCSMRE.STB
 CCSMRE.LIB

 You must install the library before you can use it. Use one of
 the following formats to install the library.

 For RSX and (Micro /RSX:
Using DCL:
 $ install/task_name:ccsmrx lb:[1,1]ccsmrx.tsk

 Using MCR:
 > ins lb:[1,1]ccsmrx/ron=yes

 For RSTS/E:
 $ install/library/read_only lb:ccsmre

 To link to the library, you must reference the module
 CSMSUP.OBJ. The reference to CSMSUP.OBJ must occur
 before any reference to the PDP11-C run-time library. This
 can be done by extracting CSMSUP.OBJ as an object or by
 referencing CSMSUP in the taskbuilder .ODL file.

 To extract CSMSUP.OBJ as an object, use one of the
 following commands:

 For RSX or Micro /RSX:
 LBR CSMSUP.OBJ=LB:[1,1]CFPURSX/EX:CSMSUP

 For RSTS/E:
 LBR CSMSUP.OBJ=LB:CFPURE/EX:CSMSUP

 To reference CSMSUP in the taskbuilder .ODL file, use one
 of the following commands:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (20 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 For RSX or Micro /RSX:
 label .FCTR directory : yourtask -LB:[1,1]CFPURSX/LB:CSMSUP- label1

 For RSTS/E:
 label .FCTR directory : yourtask -LB:CFPURE/LB:CSMSUP- label1 \

 For example, in the following taskbuilder .ODL file the
 CSMSUP.OBJ is referenced before the reference to the RSX
 PDP-11 C run-time library CFPURSX. For an RSTS/E
 system, reference the PDP-11 C run-time library CFPURE.
 CPCSM.ODL
 .root user
 user: .fctr sy:yourtask-csmsup-user1
 user1:.fctr rmsrot-libr,rmsall
 libr: .fctr lb:[1,1]cfpursx/lb:$prmxf-lb:[1,1]cfpursx/lb
 @lb:[1,1]rms11s
 .end

 The task is linked with the resident library by using the
 RESSUP taskbuilder option as shown in the following
 example. Note that the size of the stack is set to allow data to
 be passed on the stack. The following example is written for
 an RSX system, and uses CCSMRX and CFPURSX. For a
 RSTS/E system, use CCSMRE and CFPURE.
 CPCSM.CMD
 yourtask/cp/id,yourtask/cr/ma/-sp,yourtask=yourtask/mp
 stack=3000
 ressup=lb:[1,1]CCSMRX/SV:0

 Programs which use RMS or FCS to support PDP-11
 C standard I/O can increase the available user-mode
 instruction space by linking the task with both the PDP-
 11 C supervisor-mode library and either RMSRES, FCSRES
 or FCSFSL.

 The following taskbuilder command file and ODL file
 show how a program can be linked using the RMS-11 I/O
 routines library, RMSRES, and the supervisor-mode library,
 CCSMRX.
 CMD File:
 hello/fp/cp=hello/mp
 ressup=lb:[3,54]rmsres/sv:0

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (21 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 ressup=lb:[1,1]ccsmrx/sv
 //
 ODL File:
 .root user-rmsrot,rmsall
 user: .fctr sy:hello-csm-io-libr
 csm: .fctr lb:[1,1]cfpursx/lb:csmsup
 io: .fctr lb:[1,1]cfpursx/lb:$prmxf
 libr: .fctr lb:[1,1]cfpursx/lb
 @lb:[1,1]rmsslx
 .end

 The following taskbuilder command file and ODL file show
 how a program can be linked using RMSRES and the
 supervisor-mode library CCSMRE.
 CMD File:
 hello/fp/cp=hello/mp
 ressup=lb:rms$:rmsres/sv:0
 ressup=lb:ccsmre/sv
 //
 ODL File:
 .root user-rmsrot,rmsall
 user: .fctr sy:hello-csm-io-libr
 csm: .fctr lb:[1,1]cfpure/lb:csmsup
 io: .fctr lb:[1,1]cfpure/lb:$prmxf
 libr: .fctr lb:[1,1]cfpure/lb
 @lb:[1,1]rmsslx
 .end

 The following taskbuilder command file and ODL file
 show how a program can be linked using the File Control
 Services library, FCSFSL, with the supervisor-mode library
 CCSMRX. To use the FCS-11 I/O routines library, FCSRES,
 with the supervisor-mode library, substitute FCSRES for
 FCSFSL in the SUPLIB command line in the command file.
 CMD File:
 hello/fp/cp=hello/mp
 suplib=fcsfsl/sv:0
 ressup=lb:ccsmrx/sv
 //
 ODL File:
 .root user
 user: .fctr sy:hello-csm-io-libr
 csm: .fctr lb:[1,1]cfpursx/lb:csmsup

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (22 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 io: .fctr lb:[1,1]cfpursx/lb:$prcxf
 libr: .fctr lb:[1,1]cfpursx/lb
 .end

 1.5.9 Overlays
 The overlay facility provided by the Task Builder and RT-11
 Linker allows large programs to be executed in relatively
 small areas of main memory. An overlaid program is
 essentially a program that has been broken down into parts,
 or overlays, that are loaded into memory automatically
 during program execution. Please refer to Section 8.4 for
 more detailed information.

 Additional information on overlays can be found in the
 following books:

 .
 For the RSX environment-Overlay Capability and
 Overlay Loading Methods in the RSX-11M/M-PLUS
 and Micro /RSX Task Builder Manual
 .
 For the RSTS environment- RSTS/E Task Builder
 Reference Manual
 .
 For the RT-11 environment- RT-11 System Utilities
 Manual

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p22.decw$book (23 of 23)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.6 Running a PDP-11 C Program
 After you link your program, you can use the RUN
 command to execute it. The RUN command has the
 following format:
 RUN file-spec

 file-spec
 Specifies the file you want to run.

 The following example executes the image SAMPLE.TSK:
 $ run sample

 See Section 2.9.2 for information on passing arguments to a
 main function.

 During execution, an image can generate a fatal error called
 an exception condition. When an exception condition occurs,
 the system displays an error message. Run-time errors can
 also be issued by the operating system or by certain utilities.

 When an error occurs during the execution of a program, the
 program is terminated and the operating system condition
 handler displays one or more messages on the user-terminal
 device. On RSX and RSTE/E systems, the message is followed
 by a register display.

 For example, if a reserved instruction condition occurs, a
 run-time message followed by a register dump similar to the
 following RSX register dump appears:
 Task = "TT43" terminal
 Reserved inst execution
 R0 = 001751
 R1 = 100102
 R3 = 177777
 R4 = 014716
 R5 = 176026
 SP = 001200
 PC = 004002
 PS = 170010

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p23.decw$book (1 of 2)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 In the previous example:

 R0-R5
 Are the contents of each register.

 SP
 Is the contents of the stack pointer.

 PC
 Is the value of the program counter. This value represents
 the location in the program image at which the error
 occurred. The location is relative to the virtual memory
 address that the Task Builder assigned to the code program
 section of the module indicated by module name.

 PS
 Is the contents of the Processor Status Word (PSW).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p23.decw$book (2 of 2)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1.7 Debugging a PDP-11 C Program
 You can use the On-Line Debugging Tool (ODT), a user-
 interactive debugging aid. On RSX and RSTS/E systems, you
 can use the /DA qualifier to specify that ODT be included in
 the task when linking.

 For more information about ODT, see the RSX-11M/M-
 PLUS and Micro /RSX Debugging Reference Manual .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p24.decw$book1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2. Program Structure
 This chapter introduces the basic features of PDP-11 C to
 the experienced programmer. The text provides detailed
 examples and short tutorials, as well as pointers to other
 chapters in this guide. PDP-11 C background material, and
 the following components of program structure are detailed:

 .
 Function definitions
 .
 Function declarations
 .
 Function prototypes
 .
 Function parameters and arguments
 .
 Program identifiers
 .
 Blocks
 .
 Comments
 .
 PDP-11 C language keywords
 .
 Lexical Continuation
 .
 Trigraphs

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p25.decw$book1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.1 C Programming Language Background
 The C language is a general-purpose programming language
 that is manageable due to its small size, flexible due to its
 ample supply of operators, and powerful due to its utilization
 of modern control flow and data structures. The C language
 was originally designed and implemented on a UNIX®
 system on the PDP-11. The designers of the language
 comment on its functionality in the following passage:
 ``The [C] language . . . is not tied to any one
 operating system or machine; and although
 it has been called a ' system programming
 language ' because it is useful for writing
 operating systems, it has been used equally
 well to write major programs in many
 different domains.''

 1
 Like assembly language, C was not designed to accommodate
 the needs of any particular application. The C language
 manipulates and stores data with regard to the similarities of
 modern machine architecture. However, C is not as complex
 as assembler language and is not machine dependent. C is
 highly portable. A program is portable if you can compile and
 run its source program using several different compilers on
 several different machines.
 There is an ANSI standard for the C language that promotes
 the consistency of functionality between C implementations
 on different systems. There needs to be consistency if C is to
 be portable across systems; this is one of the most desirable
 features of the language. So, not only should C source
 programs be portable, the language features themselves
 should produce the same effects on all systems when you
 compile and run programs.
 The C language was developed in a UNIX system
 environment and eventually was used to rewrite most of that
 operating system, so many standard methods of operation in
 C are related to UNIX. For instance, UNIX systems access
 files by a numeric file descriptor, so many C implementations
 provide functions to access files by file descriptor.
 Some standard C constructs include preprocessor directives

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p26.decw$book (1 of 2)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 and a run-time library of functions and macros. In
 many implementations, a preprocessor completes the tasks
 designated in the preprocessor directives located in the source
 code before any action is taken by the compiler.
 Because the C language has no means to input and output
 information, a run-time library usually provides this service.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p26.decw$book (2 of 2)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.2 The PDP-11 C Programming Language
 The PDP-11 C programming language is a highly reliable
 product that is highly compatible with the ANSI C Standard.
 PDP-11 C is an optimizing C language processor for Digital's
 major operating systems on the PDP-11. Because C can
 be used to program system applications, PDP-11 C is an
 alternative to MACRO-11. This allows users, using a high-
 level language, to write code for inclusion into read-only
 memory (ROM), resident libraries, device drivers, and other
 low-level system routines.
 PDP-11 C runs native on the supported host systems and
 produces PDP-11 objects compatible with the RSX Task
 Builder and the RT-11 Linker. The standard libraries are
 provided in object form and are portable across systems,
 except for the library routines that provide direct access to
 operating system functions. For example, Standard I/O (stdio)
 is operating system dependent.
 Within the VMS environment, PDP-11 C is a cross compiler,
 running as a native VMS image and producing PDP-11
 object code. If you want to build and run your task in the
 VMS environment, VAX-11 RSX or CP/RSX must be
 installed on your system. If you do not want to link or run
 on VMS, you must use either DECnet or physical media to
 transport generated objects to the target system. Libraries are
 provided with the VMS kit to support RSX-11M, RSX-11S,
 RSX-11M-PLUS, Micro /RSX, RSTS/E, RT-11, VAX-11
 RSX, and VAX CoProcessor/RSX.
 In the RSX, RSTS/E, and RT-11 host environments, the
 compiler generates native PDP-11 object code. These
 compilers can generate object code for all target systems.
 The libraries for the RSX-11M, RSX-11S, RSX-11M-
 PLUS, Micro /RSX, RSTS/E, RT-11, VAX-11 RSX, and
 VAX CoProcessor/RSX target systems are supplied with the
 RSX, RSTS/E, and RT-11 compilers.
 The PDP-11 C programming language incorporates the
 features that are fundamental to the C language and
 that exist in most C compilers. However, PDP-11 C also
 provides features, unique to PDP-11 C, that work directly
 and efficiently with PDP-11 operating system environments.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p28.decw$book1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.3 Writing a Program
 The first program presented here is a simple one that adds
 two numbers and stores the total in a variable. Example 2-1
 shows how to code such a program.

 Key to Example 2-1:
 1 Comments. The text contained between the characters
 (/
 *

) and (
 *

 /) are comments. You cannot place comments
 within comments (that is, they cannot be nested), but you
 can place comments anywhere white space is allowed.
 White space is an area within the source code where
 blank spaces, tabs, or blank lines separate code. In later
 chapters, permitted white space is defined for PDP-11 C
 constructs.
 2 User-Defined Functions. PDP-11 C programs are
 comprised of user-defined functions that cannot be nested.
 A user-defined function named main is defined. In PDP-
 11 C, execution of a program must begin by calling a
 function named main.
 PDP-11 C functions have methods of exchanging
 information using parameters and arguments. In
 the function definition in Example 2-1, the lack of
 parameters is designated by the keyword void within
 the parentheses. The function main in this example does
 not receive information through parameters, and there
 are no function calls.
 To specify parameters in a function definition, you list
 the parameter identifiers within the parentheses and
 separate them with commas (,). You must declare the
 types of parameters either within the parentheses or in a
 declaration list before the body of the function. If you call
 a function from within function main (you normally do
 not call the main function from another part of your

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p29.decw$book (1 of 3)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 program), the function name is followed by a list of
 arguments delimited by parentheses and separated by
 commas.
 The function performs its task as determined by the
 statements found in the body, and may or may not return
 a value to the calling expression. The body of any function
 is delimited by braces ({ }). They are analogous to the
 DO-END of PL/I, or the BEGIN-END of Pascal. The
 body may contain one or more return statements. A
 return statement specifies what, if anything, is returned
 to the expression that called the function. Depending
 on the set-up of the function, you can omit the return
 statement, and its return value will remain undefined.
 If a function does not return a value, you can declare
 the function to be of type void . For more information
 concerning functions, refer to Section 2.7.2.
 3 Variable Declarations. The variable total is declared
 and defined within the function main. You must declare
 all variables before referencing them within the program.
 Declarations end with a semicolon (;). When you declare
 a variable, you specify its data type. Data types specify
 the amount of storage required and how to interpret the
 stored object. The variable total is of type int (integer).
 PDP-11 C interprets variables of type int as signed
 objects which require 16 bits (2 bytes or 1 word) of
 memory. For more information concerning data types,
 refer to Chapter 5.
 When you define a variable, you specify its storage class
 which affects its location and lifetime. Variables declared
 within a function have a default storage class of auto
 (automatic). Variables of this storage class receive storage
 space when the function is activated, and storage is
 freed when control of the calling function resumes. See
 Chapter 6 for descriptions of other types of storage classes.
 You specify PDP-11 C storage classes by placing the
 storage class keyword either before or after the data type
 keyword in the variable declaration. Note, however, that
 placing the storage class keyword anywhere other than
 before the data type keyword in the variable declaration
 is considered ``obsolescent'' by the ANSI C Standard.
 Keywords are the reserved words used to identify data
 types (such as int , double), storage classes (such as
 auto , static), statements (such as if , goto), and operators

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p29.decw$book (2 of 3)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

 (such as sizeof). Keywords are predefined identifiers
 and cannot be redeclared. You cannot use these words to
 identify variables and functions in your programs. You
 must express keywords in lowercase letters. For a list of
 the PDP-11 C keywords, refer to Section 2.11.
 PDP-11 C is a case-sensitive language. You can declare
 variables in any mixture of upper- or lowercase letters.
 The case of the references must match the case of the
 variable declaration. For example, if you declare total
 as a variable, you must reference total . If you attempt
 to reference Total , an error occurs; the compiler does
 not recognize the variable name due to the initial capital
 letter.
 4 Statements. The sum of 2 + 2 is stored in variable total .
 This is accomplished using a valid PDP-11 C statement.
 You can use any valid expression as a statement by
 ending it with a semicolon (;). Identifier total is a
 declared variable; the equal sign (=) and the plus sign
 (+) are valid PDP-11 C operators; and the numbers
 being added are valid constants. For more information
 concerning the various PDP-11 C statements, refer to
 Chapter 3. For more information concerning the PDP-11
 C operators, refer to Chapter 4.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p29.decw$book (3 of 3)1/25/06 3:40 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.4 Producing Input/Output
 The C language includes no facilities to administer I/O.
 However, all implementations, including PDP-11 C, have
 methods that allow the programs and users to communicate.
 The lack of communication in Example 2-1 is inconvenient;
 there is no way to know if the program assigns the correct
 value to variable total . You can use a PDP-11 C Run-Time
 Library (RTL) function to output the value of variable total to
 the terminal.
 All C compilers conforming to the ANSI Standard are
 accompanied by a Run-Time Library of functions and
 macros to perform input, output, and various tasks related
 to specific operating environments. The PDP-11 C Run-
 Time Library (RTL) provides many of the functions and
 macros that are included with other implementations of the
 C language. These functions work directly and efficiently
 with the host operating system environment.
 PDP-11 C RTL functions are segments of object code that
 are accessed when external references within your program
 are resolved.
 Before you can execute any of the example programs in this
 manual, you must define the libraries that the Task Builder
 or Linker must search to resolve references to PDP-11 C
 RTL functions. For general information concerning libraries,
 refer to Chapter 1.
 A header file is a file that contains a set of definitions or
 declarations of related functions, types, and macros. The
 default file type for a header file is .H. Appendix B briefly
 describes each header file provided with this implementation
 of PDP-11 C.
 For more information concerning macros, refer to Chapter 7.
 For more information on the various methods of accessing
 PDP-11 C RTL functions, refer to the PDP-11 C Run-Time
 Library Reference Manual .
 Example 2-2 shows that by using the PDP-11 C RTL
 function printf , a PDP-11 C program can print a message
 to the terminal.

 Key to Example 2-2:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p31.decw$book (1 of 3)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 1 The header file stdio.h is supplied by PDP-11 C. It defines
 the arguments to and the type of value returned by the
 Standard Library I/O functions such as printf .
 2 The PDP-11 C RTL function printf writes to the
 standard output file (the terminal screen). The first call to
 the RTL function printf passes a string as the argument.
 The second call to printf passes a string with special
 formatting characters and a variable as arguments.
 Within the formatting string, the percentage sign (%) is
 replaced by the value of total and the letter ``d'' forces
 the value of total to be expressed as a decimal number.
 The period (.) prints immediately after the value of total .
 The output for Example 2-2 follows:
 Here is the answer: 4.
 If you want to print the value of total on a separate line,
 then the newline character (\n) must be added to the string.
 Example 2-3 shows how to output on two lines.

 The output from Example 2-3 follows:
 Here is the answer . . .
 4.
 Now that a program producing output has been presented,
 it is necessary to compile, link, and execute the program to
 see the results. Compiling a program translates the source
 code to object code; linking a program organizes storage and
 resolves external references (for example, references to PDP-
 11 C RTL functions); and running a program executes the
 image.
 A file is distinguished by a file name and a file type. Choose
 the file name so that the file is easily identifiable to the user.
 The maximum number of characters allowed in the file
 name is dependent on the operating system:
 .
 RSTS/E and RT-11: maximum of six-character names
 plus the file type which can have a maximum of 3
 characters.
 .
 RSX: maximum of nine-character names plus the file
 type which can have a maximum of 3 characters.
 .
 VMS: maximum of 39-character names plus the file type
 which can have a maximum of 39 characters.
 Choose the file type to reflect the function of the file. The file

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p31.decw$book (2 of 3)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 type C is the default for the PDP-11 C compiler. If the file
 name ADD is given to the PDP-11 C compiler, the compiler
 will look for the file ADD.C.
 After you create and name your program, the program can
 be compiled, linked, and executed on VMS (using VAX-11
 RSX for linking and running) as follows:
 $ pdpcc add.c
 $ mcr tkb add/cp/fp=add,lb:[1,1]cfpursx/lb
 $ run add
 Here is the answer . . .
 4.
 $
 The file type OBJ is the default assigned to the object file.
 EXE, TSK, and SAV are the default file types assigned to
 image files for VMS, RSX and RSTS/E, and RT-11 and
 RSTS/E systems, respectively.
 Use the CFPURSX library on RSX machines with FPU.
 Refer to Section 1.5.8.1 for information on which library to
 link to in other situations.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p31.decw$book (3 of 3)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.5 Controlling Program Flow
 There will be occasions when you must execute one or more
 PDP-11 C statements given a certain condition. There will
 be other occasions when you must execute one or more PDP-
 11 C statements repeatedly, within the body of a loop, until
 you meet a certain condition. There are several statements
 in PDP-11 C that accomplish these tasks. These statements
 are the if statement, the switch statement, the do statement,
 and the for statement. For information concerning the
 while statement, another statement that loops until meeting
 a condition, refer to Chapter 3.

 2.5.1 Testing for a Condition (if Statement)
 When executing one or more PDP-11 C statements given a
 certain condition, you can use the if statement. Example 2-4
 shows a program using the if statement.

 Key to Example 2-4:
 1 The PDP-11 C RTL function getchar retrieves a
 character from the standard input device (the keyboard).
 The program pauses, waiting for the user to enter a
 character and to press the Return key. The function
 getchar retrieves one character and ignores any others
 that are entered.
 2 If the letter that the user enters is either ' a ' or ' A ' , then
 a message stating that the choice is correct is displayed. If
 any other letter is entered, then a message stating that the
 choice is incorrect is displayed. The equality operator (= =)
 compares the variable ch with the constants ' a ' and ' A ' .
 The logical OR operator (k) presents the condition to test.
 If there is more than one statement to be executed upon
 condition, then you must enclose the statements within
 braces ({ }). A statement or statements enclosed within
 braces is called a block or compound statement . The
 concept of blocks is important when determining the
 scope of variables. For more information concerning
 blocks, refer to Section 2.12.
 The interaction between the user and the program in
 Example 2-4 might be as follows:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p34.decw$book (1 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 $ run example4
 Guess which letter I'm thinking of!
 b
 You're wrong.
 You'll have to try again!

 2.5.2 Testing for Multiple Conditions (switch Statement)
 The switch statement can perform the same task as the if
 statement does in Example 2-4, but switch is useful when
 many conditions must be tested. Example 2-5 is an example
 that uses the switch statement.

 Key to Example 2-5:
 1 When using the macro tolower , you must include the
 header file ctype.h in the compilation process. The file
 ctype.h is located in the directory containing supplied
 header files. (See Table 7-1.)
 In PDP-11 C, the preprocessor directives are processed
 by an early phase of the compiler, not by a separate
 program as the name preprocessor implies. Directives,
 unlike other PDP-11 C lines of source code, begin with a
 number sign (#). The number sign must be the leftmost
 nonwhite-space character on the preprocessor directive
 line. A preprocessor directive ends with the first new
 line character that follows # . Do not end preprocessor
 directives with a semicolon.
 The header file ctype.h is not the only module that
 contains macros and definitions used by the RTL
 functions; there are several ways to include definitions in
 the program stream. For more information concerning
 the PDP-11 C RTL and the header files, refer to the
 PDP-11 C Run-Time Library Reference Manual .
 2 The compiler replaces the reference to the tolower
 macro with a line of PDP-11 C source code that, when
 the program is run, translates the value of the variable
 ch to a lowercase letter. To see the macro definition of
 tolower , print the file CTYPE.H (see Table 7-1 for the
 location of supplied header files on your system). For
 more information concerning the possible side effects of
 macros, refer to Chapter 7.
 The output for Example 2-5 is as follows:
 $ run example5

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p34.decw$book (2 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 Guess which letter I'm thinking of!
 A
 You're right!
 The switch statement executes one or more of a series of
 cases based on the value of the expression in parentheses. If
 the value of variable ch is ' a ' , then the statements following
 the label case ' a ' : are executed. In Example 2-5, the
 tolower macro translated all alphabetic answers to lowercase
 letters, so there is no need to test for uppercase letter ' A ' .
 When a case label is matched with the value of variable
 ch , all the statements following are executed until the
 compiler encounters a break statement (which terminates
 the immediately enclosing statement), a return statement
 (which terminates the enclosing function), or the end of the
 switch statement. The statements following the default
 label are executed if the value of the variable does not
 match any of the other case labels. For more information
 concerning switch statements, refer to Chapter 3.

 2.5.3 Loops
 In the previous examples, you could only guess once during
 the execution of the program. To guess another letter, you
 had to execute the program again. If you want to execute
 a segment of code repeatedly until a condition is met, you
 may use a loop. Some loops execute a block of statements,
 known as the loop body, a specified number of times. Some
 loops test for a condition first and then execute the body of the
 loop if the condition is true. Some loops execute the loop body
 and then test for a condition, which guarantees at least one
 execution of the body. In PDP-11 C, this last loop is called
 the do statement. Example 2-6 shows how to use the do
 statement to alter the letter-guessing program to repeat a
 segment of code until the correct answer is supplied.

 Key to Example 2-6:
 1 The case label tests to see if the value of the character is a
 newline character (\n). The newline character is entered
 when you press the Return key. If it is the newline
 character, the character is ignored and a new character
 is taken from the terminal.
 2 The while expression at the end of the do statement uses
 the not equal to operator (!=) and translates as follows:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p34.decw$book (3 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 ``while the variable ch is not equal to ' a ' .''
 Sample output for Example 2-6 follows:
 $ run example6
 Guess which letter I'm thinking of!
 Keep guessing until you get it!
 B
 You're wrong.
 You'll have to try again!
 A
 You're right!
 You can alternately use the for statement to specify the
 number of times to execute the loop body; in the previous
 examples, you can use for to limit the number of guesses that
 the user may attempt. Example 2-7 illustrates this use of the
 for statement.

 Key to Example 2-7:
 1 The for statement controls how many times the body
 of the loop is executed. The first expression inside the
 parentheses following the keyword for initializes variable
 i (being used as the loop incrementor) to the value 1. The
 second expression establishes an upper bound; the value of
 i is not to exceed 3. The third expression establishes the
 increment or decrement value of i that will be executed
 after every execution of the loop body. The double plus
 signs (++) represent the increment operator; they increase
 the value of a variable by 1. The loop body is executed,
 and each time the value of i increases by 1 until the value
 of i is greater than 3.
 2 The double minus signs (- -) represent the decrement
 operator. The decrement operator is used in this example
 to subtract one from the value of i so that newline
 characters are not counted as the guess of a letter.
 Sample output for Example 2-7 follows:
 $ run example7
 Guess which letter I'm thinking of!
 You have three guesses. Make them count!
 B
 You're wrong.
 You'll have to try again!
 C
 You're wrong.
 You'll have to try again!

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p34.decw$book (4 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 U
 You're wrong.
 Sorry, you ran out of guesses!

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p34.decw$book (5 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.6 Values, Addresses, and Pointers
 In PDP-11 C, every variable has two types of values: a
 memory location and a stored object. An lvalue is the
 variable's address in memory, and an rvalue is the stored
 object. Consider the following example:
 put_it_here = take_this_object;
 This assignment statement is not very different from
 statements in other programming languages, but think
 about the differences between locations in memory and
 objects stored in memory. This assignment takes the rvalue
 of take_this_object and places it in memory at the lvalue of
 put_it_here .
 Consider the following PDP-11 C declarations and
 assignment statement:
 int x = 2, y;
 /* put_it_here = take_this_object; */
 y = x;
 The two distinct variables have different memory locations
 (lvalues), but, after the assignment statement, they contain
 objects of the equivalent value 2.
 A variable's rvalue can be many things, such as an integer,
 a real number, a character string, or a data structure. One
 variable value can be the address of another variable. When
 one variable points to another, the first one's rvalue will be
 the second's lvalue.
 A declaration of a variable whose rvalue is a pointer to
 another variable is as follows:
 int *pointr;
 The indirection notation (
 *

) specifies that the variable is a
 pointer, which in this example points to an object of data
 type int . Pointers are declared as pointing to an object of a
 particular data type.
 You can assign the address of a variable to the pointer as
 follows:
 int *pointr; /* Declarations */
 int x = 10, y = 0;
 pointr = &x; /* Assignment */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p39.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 The rvalue of the variable pointr is the lvalue of variable x .
 In this example, the ampersand (&), which is the ``address
 of'' operator, translates to the following: ``take the lvalue of
 this variable instead of its rvalue.'' In previous examples, the
 rvalue of the variable on the right side of the equal sign (=)
 was taken.
 Figure 2-1 shows the difference between rvalues and lvalues
 as illustrated in the last example.

 The value of the variable pointr contains the address of
 variable x . Remember that the location of variables in
 memory and the order in which the compiler allocates them
 is unpredictable and left to the discretion of the compiler.
 After you assign an address to the pointer, you will want to
 use it. For example, if you want to assign the rvalue of x to a
 variable y, you can use the pointer in a PDP-11 C statement
 as follows:
 y = *pointr;
 The asterisk (
 *

) is the PDP-11 C indirection operator; the
 object of the variable being pointed to by pointr is assigned to
 y. The indirection operator translates as follows: ``the rvalue
 of this variable points to some other variable, so go to that
 location and access the stored object.'' Figure 2-2 shows
 the status of the variables after you execute the last code
 example.

 For more information concerning pointers, refer to Chapter 5.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p39.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.7 Function Definitions
 You may declare or define functions you wish to call or use
 in a PDP-11 C program. You should always declare user-
 defined functions before you call them. The following sections
 explain the rules for defining functions, but you may wish
 to refer to the discussion of declarations and definitions in
 Chapter 5 before continuing here.
 In a function definition, you specify the PDP-11 C statements
 that execute whenever you call the function. You also specify
 the parameters (if any) of the function. The parameters
 of a function provide a means to pass data to the function.
 See Section 2.9 for a detailed discussion of parameters and
 arguments.
 Example 2-8 presents two sample function definitions.

 Key to Example 2-8:
 1 Program execution begins with function main. A left
 brace ({) signifies the beginning of the function body;
 a right brace (}) signifies the end of the body. The
 function body is any set of valid PDP-11 C statements
 or declarations. Often, the body includes one or more
 return statements, as shown here. A return statement
 can specify an expression whose value is returned to the
 calling function. If the expression is omitted, the returned
 value is undefined in the calling function. If the return
 statement is not included, the function terminates when
 the right brace is encountered, and its return value is
 undefined. For more information concerning the return
 statement, refer to Chapter 3.
 2 This statement begins a new function identifier, lower ,
 that returns an integer; function lower accepts the single
 integer parameter c_up.
 For more information concerning the PDP-11 C operators
 used in the previous example, refer to Chapter 4.

 2.7.1 Main Function and Function Identifiers
 The execution of a PDP-11 C program must begin at the
 function whose identifier is main. In Example 2-8, the main
 function physically precedes the function lower, but the two

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p42.decw$book (1 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 function definitions can appear in the reverse order.
 Function names have compile-time scope rules that are
 different from those that apply to other identifiers. Any valid
 function identifier followed by a left parenthesis is declared
 implicitly as the name of a function whose storage class is
 external and whose return value is of the data type int . A
 function prototype declares a user-defined function before it
 is called. For more information concerning scope and storage
 classes, refer to Chapter 6.

 2.7.2 Parameter List Declarations
 There are two methods to declare function parameters. The
 preferred method of declaring parameter data types is shown
 in the following code example:
 int lower(int c_up)
 {
 .
 .
 .
 For instance, your function definition may appear as follows:
 int function_name(int lower, int upper, int temp, char x, float y)
 {
 .
 .
 .
 When you use the function prototype format in a function
 definition, you must supply both an identifier and a data type
 specification for each parameter. If you do not, PDP-11 C
 will generate an error message.
 In a function prototype definition, you must use the keyword
 void to specify an empty parameter list.
 An example of the use of the void keyword follows:
 char function_name(void)
 { return 'a'; }
 The following example shows a second method of declaring
 function parameters. This method does not allow parameter
 type-checking and is considered obsolete.
 lower(c_up)
 int c_up;
 {
 .
 .
 .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p42.decw$book (2 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 To make your code concise, you may list the data types of
 the function parameters within the parameter list. If you use
 this method, your function definition also serves as a function
 prototype. See Section 2.8.1 for more information concerning
 the effect of function prototypes.

 2.7.3 Function-Return Data Types
 By default, all PDP-11 C functions return objects of data type
 int . In Example 2-8, function lower returns an integer to the
 function main, using the return statement.
 If you define a function that returns anything other than an
 integer, you need to specify the function-return data type
 in the function definition. The following example shows the
 definition of a function returning a character:
 char letter(int param1, char param2, int *param3)
 {
 .
 .
 .
 return param2;
 }
 If a function does not return a value, or if you do not call
 the function within an expression that requires a value, you
 can define the function as type void . The presence of the
 void keyword in a function declaration causes an error to be
 generated under the following conditions:
 .
 If the function returns a value
 .
 If you call the void function in an expression that requires
 a return value
 The following example shows how to use the void keyword to
 specify a function without a return value:
 void message(char *s)
 {
 printf("%s\n",s);
 printf("Stop making sense!");
 return;
 }

 2.7.4 Variable-Length Parameter Lists
 If you decide to define a function with a variable-length
 parameter list, you can use an ellipsis (. . .) in a function

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p42.decw$book (3 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 prototype declaration to designate the variable-length portion
 of the parameter list, as follows:
 function_name(int lower, int upper, int temp, char x, float y, ...)
 {
 .
 .
 .
 }
 Within the function body, use the va_start , va_arg , and va_
 end macros defined in the stdarg.h header file to access the
 argument list passed to the function. These macros provide a
 portable means of accessing variable-length argument lists.
 For more information concerning these macros, refer to the
 PDP-11 C Run-Time Library Reference Manual .
 When using ellipses for variable-length argument lists, you
 must have at least one argument preceding the ellipses. The
 following definition is legal:
 function_name(double lower, ...)
 {
 .
 .
 .
 }
 The following definition is not legal:
 function_name(...)
 {
 .
 .
 .
 }
 Example 2-9 shows a variable argument construct:

 The output for Example 2-9 follows:
 3 4 string1
 3.000000 string2 4

 Note

 If you use function prototypes, you should use
 ellipses (. . .) within parameter lists so that the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p42.decw$book (4 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 compiler does not typecheck the trailing parameters.
 See Section 2.8.1 for more information concerning
 function prototypes.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p42.decw$book (5 of 5)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.8 Function Declarations
 You may call a function without declaring it if the function's
 return value is an integer. If the return value is anything
 else, the function may have to be declared. Example 2-10
 illustrates when you need to declare a function.

 Key to Example 2-10:
 1 Since the location of the function definition is after the
 main function in the source code, and since function
 lower has a return type of char , you have to declare the
 function before calling it.
 In a function declaration, you can use the keyword void to
 specify an empty argument list, as follows:
 int main()
 {
 char function_name(void);
 .
 .
 .
 }
 char function_name(void)
 { }
 If the function does not return a value, you can use the void
 keyword in the declaration, as follows:
 int main()
 {
 void function_name();
 .
 .
 .
 }
 void function_name()
 { }
 If you specify argument data types or void in the parameter
 list of a function declaration as shown in the following
 example, PDP-11 C treats the function declaration as a
 function prototype for the scope of the declaration:
 int main()
 {
 char function_name(int x, char y);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p45.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 .
 .
 .
 }
 Since the declaration is within the scope of main, PDP-
 11 C uses the function declaration as a function prototype
 only within main. See Section 2.8.1 for more information
 concerning function prototypes.

 2.8.1 Function Prototypes
 A function prototype is a function declaration that specifies
 the data types of its arguments in the identifier list. PDP-11
 C uses the prototype to ensure that any function definition,
 and all declarations and calls within the scope of the
 prototype, contain the correct number of arguments or
 parameters, and that each argument or parameter is of the
 correct data type.
 In each compilation unit in your program, determine where
 to place the corresponding function prototype. The position
 of the prototype determines the prototype's scope; the scope
 of the function prototype is the same as the scope of any
 other declaration. PDP-11 C checks all function definitions,
 declarations, and calls from the position of the prototype to the
 end of its scope. Misplacing the prototype so that a function
 definition, declaration, or call occurs outside the scope of the
 prototype may cause an undefined function error or cause
 the definition of distinct function prototype declarations.
 Corresponding function prototype declarations are identical
 to the declarative part of a function definition that specifies
 data types in the identifier list. All function declarations not
 followed by a defining block end with a semicolon (;). The
 following code example is a prototype that corresponds with
 either of the previous sample function definitions:
 char function_name(int lower, int *upper, char (*func)(), double y);
 When declaring a function prototype that is not followed by
 a defining block, you do not need to use the same parameter
 identifiers as in the function definition. If you choose, you do
 not need to specify any identifiers in the prototype declaration.
 The scope of the identifiers within function prototypes exists
 only within the identifier list; you are free to use those
 identifiers outside of the prototype.
 You can use the following function:
 Function:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p45.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 char function_name(int lower, int *upper, char (*func)(), double y)
 { }
 For any of the following prototypes:
 Prototypes:
 char function_name(int lower, int *upper, char (*func)(), double y);
 char function_name(int a, int *b, char (*c)(), double d);
 char function_name(int, int *, char (*)(), double);
 You can specify variable-length argument lists in function
 prototypes by using ellipses. You must have at least one
 argument in the list preceding ellipses. The following
 example illustrates the specification of a variable-length
 argument list:
 char function_name(int lower, ...);
 You cannot omit data type specifications in a function
 prototype. Also, you cannot have a variable-length argument
 list that is not preceded by at least one argument. The
 following prototypes are not legal and their use generates
 appropriate error messages:
 char function_name(lower, *upper, char (*func)(), float y);
 char function_name(, , char (*func)(), float y);
 char function_name(...);
 Use function prototypes to ensure that all corresponding
 function definitions, declarations, and calls within the
 scope of the prototype conform to the number and type of
 parameters specified in the prototype. A function prototype is
 considered in scope only if a function prototype declaration is
 specified within a block enclosing the function call or at the
 outermost level of the source file. If a prototype is in scope,
 the automatic widening of float arguments to double is
 not performed. However, the automatic widening of char
 argument to int is performed. If the number of arguments
 in a function definition, declaration, or call does not match
 the prototype, the statement generates the appropriate error
 message.
 If the data type of an argument in a function call does
 not match the prototype, PDP-11 C attempts to perform
 conversions. If the mismatched argument is assignment
 compatible with the prototype parameter, PDP-11 C converts
 the argument to the data type specified in the prototype,
 according to the parameter and argument conversion rules
 (see Section 2.9).
 If the mismatched argument is not assignment compatible
 with the prototype parameter, the action generates the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p45.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 appropriate error message and the results are undefined.
 The syntax of the function prototype is designed such that
 PDP-11 C can provide effective compile-time error detection
 on the number and types of parameters to the function. To
 use prototype checking for PDP-11 C Run-Time Library
 function calls, you can include the header files appropriate
 for the RTL functions used in your program. You place the
 #include preprocessor directives at the top of any applicable
 compilation units.
 For more information concerning the RTL prototype include
 modules, refer to the PDP-11 C Run-Time Library Reference
 Manual . For more information concerning preprocessor
 directives, refer to Chapter 7. For more information
 concerning compilation units and scope, refer to Chapter 8.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p45.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.9 Using Parameters and Arguments
 PDP-11 C functions can exchange information by means
 of parameters and arguments. (In this manual, the term
 parameter denotes the variable within parentheses named
 in a function definition; the term argument denotes an
 expression that is part of a function call.) In Example 2-8,
 function lower has the single parameter c_up. When this
 function is called from the function main, argument c is
 evaluated and passed to function lower.
 The following rules apply to parameters and arguments of
 PDP-11 C functions:
 .
 The number of arguments in a function call must be
 the same as the number of parameters in the function
 definition, except if the definition includes the ellipsis. A
 function may or may not have arguments.
 .
 In PDP-11 C, the maximum number of arguments (and
 corresponding parameters) is 255 for a single function.
 .
 Arguments are separated by commas. However, the
 comma is not an operator in this context, and the
 arguments may be evaluated by the compiler in any
 order. Do not expect function calls or expressions in the
 argument list to be evaluated in any particular order.
 .
 In PDP-11 C, arguments are passed by value; that is,
 when a function is called, the parameter receives a copy
 of the argument's value, not its address. This rule applies
 to all scalar variables, structures, and unions passed
 as arguments. If a function modifies the value of its
 argument, those arguments will be unchanged in the
 calling function.
 .
 Because arguments can be addresses or pointers, a
 function can use addresses to modify the values of
 variables defined in or within the scope of the calling
 function.
 .
 The types of evaluated arguments must match the types

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p47.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 of their corresponding parameters when a function
 prototype is in scope. In the presence of the ellipsis,
 any undeclared parameters are also subject to the
 following type conversions. When a function is called
 and a function prototype is not in scope, PDP-11 C does
 not compare the types of the arguments with those of the
 corresponding parameters so it does not generally convert
 the arguments to the types of the parameters. Instead,
 all of the expressions in the argument list are converted
 according to the following conventions:
 - Any arguments of type float are converted to
 double .
 - Any arguments of types char or short are converted
 to int .
 - Any arguments of type unsigned char are converted
 to unsigned int .
 - Any function name appearing as an argument is
 converted to the address of the named function.
 You must declare the corresponding parameter as a
 pointer to a function, which evaluates to a value of the
 same data type as the function.
 - Any array name appearing as an argument is
 converted to the address of the first element of
 the array. You must declare the corresponding
 parameter either as an array of the given type or
 as a pointer to the given type. Since character-
 string constants are declared implicitly as arrays of
 characters, this rule also applies to the use of string
 constants as arguments.
 No other default conversions are performed on
 arguments. If you know that a particular argument
 must be converted to match the type of the corresponding
 parameter, use the cast operator. For more information
 concerning the cast operator, refer to Chapter 4.
 .
 If you declare variables in the parameter declaration
 section that do not exist in the parameter list, the
 appropriate error message will be issued.
 .
 If you do not declare parameter types, they are implicitly
 declared to be of type int .
 .
 The passing of parameters is affected by the function's

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p47.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 linkage. For more information, see the #pragma linkage
 section in Chapter 7.

 2.9.1 Function and Array Identifiers as Arguments
 You can use a function identifier without parentheses and
 arguments. In this case, the function identifier evaluates to
 the address of the function. This method of referencing is
 useful when passing a function identifier in an argument list.
 You can pass the address of one function to another as one of
 the arguments.
 If you wish to pass the address of a function in an argument
 list, the function must either be declared or defined, even if
 the return value of the function is an integer. Example 2-11
 shows when you must declare user-defined functions and
 how to pass functions as arguments.

 Key to Example 2-11:
 1 You can pass function x in an argument list, since its
 definition is located before the function main.
 2 You must declare function y before you pass the function
 in an argument list, since its function definition is located
 after the main function.
 3 When you pass functions as arguments, do not include
 the parentheses. Similarly, when you specify arrays, do
 not include subscripts.
 4 When declaring parameters which represent functions,
 declare them as pointers to functions. For convenience,
 declarations of parameters, which are functions or arrays,
 can be declared as ordinary function or array declarators;
 the compiler automatically converts them to pointers.
 PDP-11 C treats array parameters in the same way.
 For more information about pointers, addresses, and
 dereferencing, see Chapter 5.

 2.9.2 Passing Arguments to the Function Main
 The function main in a PDP-11 C program can accept
 arguments from the command line from which it was
 invoked. The syntax for such a main function is as follows:
 int main(int argc, char *argv [])
 In this syntax, parameter argc is the count of arguments
 present in the command line that invoked the program.
 Parameter argv is an array of character strings of the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p47.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 arguments.
 In the main function definition, the parameters are optional.
 However, you can access only the parameters that you define.
 You can define function main in either of the following ways:
 int main(void)
 int main(int argc, char *argv[])
 On RSX systems, you can pass a command line by using
 RUN/COMMAND: (DCL) or RUN/CMD= (MCR);
 otherwise you must install the program as described below.
 On the RSX and RSTS/E operating systems, arguments may
 be passed from the command line if the program is installed.
 On RSX systems, install your program using the command
 INSTALL. The following example shows how to install the
 program, ECHO.C (only three characters may be used for
 the name):
 $ install echo/task=...ech
 On RSTS/E systems, you install ECHO.C as a CCL as in the
 following example:
 $ define/command echo
 On RT-11, you need only run the program with the
 arguments to main following the program name.
 Example 2-12 shows ECHO.C, which displays the command-
 line arguments that were used to invoke it.

 Sample output for Example 2-12 follows:
 $ ech Long "Day's" "Journey into Night"
 program: ech
 argument 1: long
 argument 2: Day's
 argument 3: Journey into Night
 At run time, PDP-11 C converts most arguments on the
 command line to lowercase. PDP-11 C internally parses
 and modifies the altered command line to make argument
 access on PDP-11 C compatible with C programs developed
 on other systems.
 All alphabetic arguments in the command line are delimited
 by spaces or tabs. Arguments with embedded spaces or tabs
 must be enclosed in quotation marks (" "). Uppercase
 characters in arguments are converted to lowercase, but
 arguments within quotation marks are left unchanged.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p47.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.10 Identifiers
 Identifiers consist of up to 31 letters, digits, and underscore
 characters (_). When compiling using the /NOSTANDARD
 qualifier, the dollar sign ($) may also be used in identifiers.
 When using global names, all underscore characters (_)
 are converted to periods (.). If you create identifiers with a
 length of more than 31 characters, the compiler ignores all
 characters after the 31st character. If the identifier will be
 seen by the RT-11 Linker or the RSX Task Builder, as in a
 declaration with [extern] or #module , the first 6 characters
 must be unique after conversion of all letters to uppercase
 and must obey the external environment's rules.
 The first character must not be a digit, and to avoid conflict
 with names used by PDP-11 C, should not be an underscore
 character. PDP-11 C uses a preceding underscore to identify
 implementation-specific macros, keywords, constants, and
 functions.
 Upper- and lowercase letters specify different variable
 identifiers. For example, the compiler interprets abc, aBc, and
 ABC as different variable names.
 The dollar sign and underscore characters within identifiers
 for global symbols are reserved for use by Digital. Identifiers
 that contain dollar signs are not portable and are not accepted
 when using the /NOSTANDARD compiler switch.
 Digital recommends that you use the following conventions if
 practical:
 .
 Avoid using underscores as the first character of your
 identifiers.
 .
 Use uppercase letters in identifiers if they are constants
 that are given values by the #define directive.
 .
 In all instances of a global name, use identical spellings
 and case. All names that become part of the Task Builder
 or RT-11 Linker's global symbol table are represented
 there in uppercase. Consider the following examples:
 int globalvalue c$errn = 0;
 globalvalue C$ERRN;
 The compiler will consider these to denote different global

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p50.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 names; however, uppercase forms for both are passed to
 the RT-11 Linker or Task Builder, potentially causing
 errors when the program is linked or executed. For more
 information concerning the globalvalue specifier, refer
 to Chapter 6.
 .
 Use lowercase or mixed case letters for all other
 identifiers.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p50.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.11 Keywords
 Keywords are predefined identifiers. They cannot be
 redeclared. They identify data types, storage classes,
 and certain statements in PDP-11 C. Note that many
 conventional words in PDP-11 C programs are not keywords
 and can be redeclared. The notable examples are the names
 of functions, including main and the functions found in
 libraries that accompany the PDP-11 C compiler.
 Keywords must be expressed in lowercase letters.
 Table 2-1 lists the PDP-11 C keywords.

 To maintain VAX C compatibility, do not redefine VAX C
 or C++ keywords. The VAX C keywords are shown in
 Table 2-2.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p51.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.12 Blocks
 A block is a compound statement surrounded by braces ({
 }). You can use a block when the grammar of PDP-11 C
 requires a single statement. The common cases are the bodies
 of functions and if , for , do , switch , and while statements.
 Note that this definition of a block may conflict with its
 definition in other languages. In PDP-11 C, the terms block
 and compound statement are equivalent.
 A block may also contain declarations. If it does, any
 declarations of auto , register , or static variables are local
 to the block. Example 2-13 presents nested blocks and the
 differences in the scope of declared variables.

 Key to Example 2-13:
 1 In the outer block of the function main, variable i used in
 the if statement is an integer. The default storage class
 for this variable is auto .
 2 Within the block in the if statement, variable i is a single-
 precision floating-point value with the default storage
 class auto .
 Sample output for Example 2-13 follows:
 Inner-block variable i:30000001023.999997
 Outer-block variable i:1
 If initialization is specified for any auto or register variables
 in a nested block, it is performed each time control reaches
 the block normally. Such initializations are not performed if a
 goto statement transfers control into the middle of the block
 or if the block is the body of a switch statement. For more
 information concerning data types, refer to Chapter 5. For
 more information concerning scope and storage classes, refer
 to Chapter 6.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p54.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.13 Comments
 Comments, delimited by the character pairs (/
 *

) and (
 *

 /),
 can be placed anywhere that white space can appear. The
 text of a comment can contain any characters except the
 close-comment delimiter (
 *

 /). Comments cannot be nested.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p56.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.14 Lexical Continuation
 You can lexically continue a line in your program by
 placing a backslash (\) as the last character in the line.
 You can specify lexical continuation at any point, except
 within a trigraph. This feature is useful for specifying long
 preprocessor directive lines (such as #define) and for long
 string literals. For information on string literal concatenation,
 see Section 2.15.
 The following is an example of lexical continuation:
 #define RESET() \
 (\
 a = 0, \
 b = 0, \
 c = 0, \
 d = 0, \
)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p57.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.15 String Literal Concatenation
 You can concatenate string literals by placing the two
 string literal tokens adjacent to each other. You can place
 any number of space and tab characters or comments
 between the two string literals. You can also use string
 literal concatenation across separate lines.
 This feature is useful for defining long string literals. You
 can concatenate any number of string literals, restricted
 only by memory and address space limitations of the target
 environment. A terminating null byte is placed at the end of
 the resulting concatenated string, but not at the end of the
 individual string literals before concatenation.
 The following is an example of a string literal before
 concatenation:
 "This literal con"
 "catenates."
 After concatenation, the string literal becomes the following:
 "This literal concatenates."

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p58.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 2.16 Trigraphs
 Trigraphs are 3-character sequences used to represent
 specific characters that are not supported by certain
 terminals, printers, and display devices.

 Note

 Most Digital terminals, printers, and display devices
 support all characters required for programming in
 C. Generally, use of trigraphs are required only with
 devices that are not produced by Digital or when
 using alternate character sets (see Section 7.7.1.)

 All trigraph sequences begin with two question marks (??)
 followed by a universally supported character that most
 closely resembles the unsupported character.
 Table 2-3 shows the defined trigraph sequences and the
 characters into which each trigraph sequence is translated.
 Trigraph sequences are translated in all contexts, including
 sequences within string literals and character constants.
 Only the trigraph sequences shown are translated; two
 question marks (??) followed by any other character are not
 translated.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p59.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3. Statements
 This chapter describes the statements in the PDP-11 C
 programming language. Statements are executed in the
 sequence in which they appear in a program, except as
 indicated.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p61.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.1 The Labeled Statement
 Labels are identifiers used to flag a location in a program and
 to be the target of a goto statement.
 The syntax of a label is as follows:
 identifier:
 Any statement can be preceded by a label. The scope of
 the label is the current function body. Labels have their
 own name space and, therefore, do not interfere with
 variable names. Labels are used only as the targets of goto
 statements.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p62.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.2 Compound Statement
 A compound statement or block is a group of two or more
 statements enclosed within braces ({ }). You can use a block
 wherever the grammar of PDP-11 C requires a single
 statement. It allows more than one statement to appear
 where a single statement is required by the language. The
 common cases are bodies of functions and if , for , do , switch ,
 and while statements. The following code is an example of a
 block:
 if (a == 2)
 {
 int x = 5;
 z = 1;
 if (y < x)
 funct(y, z);
 else
 funct(x, z);
 }
 The block contains optional declarations followed by an
 optional list of statements, all enclosed in braces. If you
 include declarations, the variables they declare are local
 to the block, and for the rest of the block they supersede
 any previous declaration of variables of the same name.
 Inside blocks, you can initialize variables whose declarations
 include the auto , register , static , or globaldef storage class
 specifiers.
 A block is entered either normally when control flows into it,
 or when a goto (or switch) statement transfers control to a
 label in the block itself. Automatic storage for all blocks within
 a function is allocated at function entry. If a block is entered
 through a goto (or in a switch) statement, initialization of
 variables defined within that block will not occur. For more
 information concerning storage classes, refer to Chapter 6.
 All function definitions are compound statements. The
 compound statement following the parameter declarations in
 a function definition is called the function body.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p63.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.3 The Null Statement
 Use null statements to provide null operations in situations
 where the grammar of the language requires a statement,
 but the program requires no work to be done.
 The syntax of the null statement follows:
 ;
 You need to use the null statement with the if , while , do ,
 and for statements in cases where the grammar requires
 a statement body but the program requires no functional
 operation. The most common use of this statement is in loop
 operations, where all the loop activity is performed by the
 test portion of the loop. For example, the following statement
 finds the first element of an array known to have a value of
 0:
 for(i=0; array[i] != 0; i++)
 ;
 Refer to Section 3.2 and Section 3.6 for more information
 concerning the statements mentioned here.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p64.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.4 The Expression Statement
 You can use any valid expression as a statement by
 terminating it with a semicolon. The following is an example
 of an expression used as a statement:
 i++;
 This statement increments the value of the variable i .
 For more information concerning the valid PDP-11 C
 expressions, refer to Chapter 4.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p65.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.5 Selection Statements
 A selection statement selects from a set of statements
 depending on the value of a controlling expression. The
 following sections describe the if statement and the switch
 statement.

 3.5.1 The if Conditional Statement
 An if statement executes a statement depending on the
 evaluation of an expression and can optionally be written
 with an else clause.
 The syntax of the if statement follows:
 if (expression)
 statement
 else
 statement
 The else clause and following statement are optional.
 An example of the if statement follows:
 if (i < 1)
 funct(i);
 else
 {
 i = x++;
 funct(i);
 }
 If the evaluated expression within parentheses is true (in
 the example, if variable i is less than 1), then the statement
 following the evaluated expression executes; the statement
 following the keyword else does not execute. If the evaluated
 expression is false, then the statement following the keyword
 else executes.
 All logical operators define a true result to be nonzero.
 Therefore, any scalar expression in the conditional statement
 can be a logical expression with predictable results (true or
 false; nonzero or zero).
 An ambiguity occurs when you omit an else clause from
 a nested if sequence. This is resolved by matching the else
 clause with the most recent if statement that does not have
 an else clause. For example, in the following example, the
 else matches with the inner if :
 if (x > y)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p66.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 if (x > z)
 z = 1;
 else
 z = 0;
 However, you can control the matching by using braces in
 the following way:
 if (x > y)
 {
 if (x > z)
 z = 1;
 }
 else
 z = 0;

 3.5.2 The switch Statement
 The switch statement executes one of a series of cases, based
 on the value of the expression.
 The syntax of the switch statement follows:
 switch (expression)
 statement
 The usual arithmetic conversions are performed on the
 expression, but the result must be an integer type. For more
 information concerning data types, refer to Chapter 5. The
 statement is typically a compound statement, within which
 one or more case labels prefix the statements that execute if
 the expression matches the case .
 The syntax for a case label and expression follows:
 case constant-expression :
 The constant expression must also be of type int . No two
 case labels can specify the same value.
 Only one statement in the compound statement can have the
 following label:
 default :
 The syntax for a default statement follows:
 default : statement
 The case and default labels can occur in any order. Note
 that each case flows into the next unless explicit action
 is taken, such as a break statement. When the switch
 statement is executed, the following sequence takes place:
 1. The switch expression is evaluated and compared with
 the constant expressions in the case labels.
 2. If the expression's value matches a case label, the
 statements following that label are executed. If the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p66.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 list of statements ends with the break statement, the
 break terminates the switch statement; otherwise,
 execution falls through to the next set of statements.
 (See Example 3-1.) The switch statement can also be
 terminated by a return or goto statement; if the switch
 is inside a loop, it can be terminated by a continue
 statement. For more information concerning interrupting
 statements, refer to Section 3.7.
 3. If the expression's value does not match any case label
 but there is a default case, the default case is executed.
 It need not be the last case listed. If a break statement
 does not end the default case and it is not the last case,
 the next case encountered is executed.
 4. If the expression's value does not match any case label
 and there is no default , the body of the switch statement
 is not executed.
 In general, the break statement should be used to ensure
 that a switch statement executes as expected. Example 3-1
 uses the switch statement to count blanks, tabs, and newlines
 entered from the terminal.

 Key to Example 3-1.
 1 A series of case labels is used to increment the counters.
 2 The break statement causes control to go back to
 the while loop every time a counter increments. The
 program automatically passes control to the while loop if
 none of the case statements is selected.
 Sample execution and output for Example 3-1 follows:
 $ run example.exe
 Every good boy.
 The quick brown fox.
 Line with 2

 Tab

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p66.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 Tab

 tabs.
 At this point, enter the end-of-file character, Ctrl/Z. The
 program prints the following:
 Blanks Tabs Newlines
 7 2 3
 If you omit the break statements, the program prints the
 following:
 Blanks Tabs Newlines
 12 2 5
 Without the break statements, each case drops through to
 the next case. The number shown for tabs happens to be
 right, because the tabs case is first in the switch statement
 and is executed only if ch = = ' \t ' . Notice that the number
 shown for newlines is the correct number plus the number of
 tabs, and the number shown for blanks is the total of all three
 cases. Any statements that appear within a switch statement
 before the first case label or default label are ineffective.
 Consider the following example:
 switch (ch)
 {
 int x = 1; /* Ineffective initialization */
 printf("%d", x); /* This first printf won't be executed */
 case 'a' :
 { int x = 5; /* Proper initialization */
 printf("%d", x);
 break;
 }
 case 'b' :
 .
 .
 .
 }
 In the previous example, if the variable ch equals ' a ' , then
 the program prints the value 5. The initialization outside of
 the case label is ineffective, and the printf preceding case ' a '
 cannot execute because it cannot be reached.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p66.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.6 Iteration Statements (Looping)
 An iteration statement causes a compound statement called
 the loop body to be executed until an expression evaluates to
 false. In PDP-11 C, the for and while statements evaluate
 an expression and then execute the body of the loop. Some
 loops execute the loop body and then evaluate the expression,
 which guarantees at least one execution of the body; in
 PDP-11 C, the do statement executes this loop. The following
 sections describe the for , while , and do statements.

 3.6.1 The while Statement
 The while statement evaluates an expression and executes
 a statement (the loop body) zero or more times, until the
 expression evaluates to false.
 The syntax of a while statement follows:
 while (expression)
 statement
 An example of the while loop follows:
 x = 0;
 while (x < 10)
 {
 array[x] = x;
 x++;
 }
 This statement tests the value of the variable x; if variable x
 is less than 10, it assigns x to the x th element of the array
 and then increments the variable x. If the expression in
 parentheses evaluates to false, the loop body does not execute,
 and control passes to the statement following the while loop.

 3.6.2 The for Statement
 The for statement evaluates three expressions and executes
 a statement (the loop body) until the second expression
 evaluates to false. The for statement is particularly useful for
 executing a loop body a specified number of times.
 The syntax for the for statement is as follows:
 for (expression-1 ; expression-2 ; expression-3)
 statement
 The for statement executes the loop body zero or more times.
 It uses three expressions as shown. Semicolons (;) are used

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p68.decw$book (1 of 3)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 to separate the expressions; notice that a semicolon does
 not follow the last expression. A for statement executes the
 following steps:
 1. Expression-1 is evaluated only once, before the first
 iteration of the loop. It usually specifies the initial values
 for variables.
 2. Expression-2 is a logical expression that determines
 whether or not to terminate the loop. Expression-
 2 is evaluated before each iteration. If the expression
 evaluates to false, the for loop body does not execute and
 control passes to the statement following the for loop. If
 the expression evaluates to nonzero, the body of the loop is
 executed.
 3. Expression-3 is evaluated after each iteration. It usually
 specifies increments or decrements for the variables
 initialized by expression-1.
 4. Iterations of the for statement continue until expression-
 2 produces a false (zero) value, or until some statement
 such as break or goto causes control to be transferred
 elsewhere.
 An example of the for loop follows:
 for (x=0; x<10; x++)
 array[x]=x;
 This statement initializes the variable x to 0. It then tests if
 the value of x is less than 10, and if the expression evaluates
 to nonzero, assigns the value of x to the x th element in the
 array. It then increments the variable x .
 The for statement is equivalent to the following code:
 expression-1;
 while (expression-2)
 {
 statement
 expression-3;
 }
 Any of the three expressions in a loop can be omitted. If
 expression-2 is omitted, the test condition is always true; that
 is, the while in the expansion becomes while (x), where x is
 not equal to zero. If either expression-1 or expression-3 is
 omitted from the for statement, that expression is effectively
 ignored.
 The following statement illustrates a loop that will be infinite
 unless the statement body executes a break , return , or goto .
 for (;;) statement

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p68.decw$book (2 of 3)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 3.6.3 The do Statement
 The do statement executes a statement (the loop body) one or
 more times, until the expression in the while clause evaluates
 to false.
 The syntax for the do statement follows:
 do
 statement
 while (expression) ;
 An example of the do statement follows:
 x=0;
 do
 {
 array[x]=x;
 x++;
 }
 while(x<10);
 The statement is executed at least once, and the expression is
 evaluated after each subsequent execution of the loop body. If
 the expression is true, the statement is executed again.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p68.decw$book (3 of 3)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 3.7 Jump Statements
 This section describes the statements you use to break to
 another statement. These statements are primarily used to
 exit switch statements and loops.

 3.7.1 The goto Statement
 The goto statement transfers control unconditionally to a
 labeled statement, where the label identifier must be located
 in the scope of the function containing the goto statement.
 The syntax of the goto statement follows:
 goto identifier;
 An example of the goto statement follows:
 #include <stdio.h>
 int main ()
 {
 int i;
 for (i=0; i<4; i++)
 {
 printf("My number is %d.\n", i);
 if (i == 2)
 goto even_number;
 else
 printf("I have an odd number.\n");
 }
 even_number:
 printf("I have an even number.\n");
 }
 Sample output follows:
 $ run goto.exe
 My number is 0.
 I have an odd number.
 My number is 1.
 I have an odd number.
 My number is 2.
 I have an even number.
 Be careful when branching into a block using the goto
 statement. When a goto statement branches into a block,
 initialization of automatic variables declared in that block
 (and any enclosing blocks between the goto statement and
 block containing the label) will not be performed.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p69.decw$book (1 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 3.7.2 The continue Statement
 The continue statement passes control to the end of the
 immediately enclosing while , do , or for statement.
 The syntax for the continue statement follows:
 continue;
 The continue statement is equivalent to the goto label
 statement, shown here, for each of the looping statements in
 the syntax examples that follow:
 while(. . .) do for(. . . ; . . . ; . . .)
 { { {
 . . .
 . . .
 . . .
 goto label; goto label; goto label;
 . . .
 . . .
 . . .
 label: label: label:
 ; ; ;
 } } }
 while(. . .);
 In the preceding syntax examples, a continue statement
 passes control to a location referred to by label. The
 continue statement is intended only for loops, not for switch
 statements. A continue inside a switch statement that is
 inside a loop causes continued execution of the enclosing loop
 after exiting from the body of the switch statement.
 An example of the continue statement follows:
 #include <stdio.h>
 int main ()
 {
 char c;
 while ((c = getchar()) != EOF)
 if (c == '\t') /*Skips over tabs*/
 continue;
 else putchar(c);
 }
 Sample output follows:
 $ run continue.exe
 Skip over any tabs

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p69.decw$book (2 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 Tab

 Tab

 that I type.
 Skip over any tabs that I type.
 Enter the end-of-file character, Ctrl/Z to exit the program.

 3.7.3 The break Statement
 The break statement terminates the immediately enclosing
 while , do , for , or switch statement. Control passes to the
 statement following the loop or switch body.
 The syntax for the break statement is as follows:
 break;
 An example of the break statement follows:
 #include <stdio.h>
 int main ()
 {
 int c;
 while (c = getchar())
 {
 if (c == '\n')
 break;
 putchar(c);
 }
 }
 Sample output follows:
 $ run break.exe
 The program will terminate when I press return.
 The program will terminate when I press return.
 $

 3.7.4 The return Statement

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p69.decw$book (3 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 The return statement causes a return from a function, with
 or without a return value.
 The syntax of the return statement follows:
 return [expression];
 An example of the return statement follows:
 #include <stdio.h>
 int main ()
 {
 int x = 0;
 int add_one(int i);
 printf("%d\n", x);
 x = add_one(x);
 printf("%d\n", x);
 }
 int add_one(int i)
 {
 i = i + 1;
 return i;
 }
 Sample output follows:
 $ run return.exe
 0
 1
 $
 The compiler evaluates the expression (if you specify one)
 and returns the value to the calling function. If necessary,
 the compiler converts the value to the declared type of the
 containing function's return value. If there is no specified
 return value, the value is undefined.
 You can declare a function without a return statement to
 be of type void . You cannot have a return statement with
 an expression in a function whose return type is void . For
 more information concerning the void data type and function
 return values, refer to Chapter 2.
 The value returned by the main function is passed to the
 operating system when the program exits.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p69.decw$book (4 of 4)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4. Expressions and Operators
 An expression is any series of symbols that PDP-11 C
 uses to produce a value. The simplest expressions are
 constants and variable names that yield a value directly.
 Other expressions combine operators and subexpressions to
 produce values.
 In some instances, the compiler makes conversions so that
 the data types of the operands are compatible. This chapter
 refers to these rules as the usual arithmetic conversions .
 See Section 4.9.1 for more information concerning these rules.
 This chapter discusses the following topics:
 .
 lvalues and rvalues
 .
 Primary expressions and operators
 .
 PDP-11 C operators
 .
 Unary expressions and operators
 .
 Binary expressions and operators
 .
 The conditional expression and operator
 .
 Assignment expressions and operators
 .
 The comma expression and operator
 .
 Data type conversions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p70.decw$book1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.1 Addresses (lvalues) and Objects (rvalues) of Variables
 A variable identifier is one of the primary PDP-11 C
 expressions. (See Section 4.3 for more information concerning
 primary expressions.) This type of expression yields a single
 value. However, when using the variable identifier with other
 operators, the expression evaluates to the variable's location in
 memory. The address of the variable is the variable's lvalue.
 The object stored at that address is the variable's rvalue. For
 example, PDP-11 C uses both the lvalue and the rvalue of
 variables to evaluate the following expression:
 x = y;
 The contents of variable y are taken and assigned to variable
 x . The expression on the right side evaluates to the variable's
 rvalue while the expression on the left side evaluates to the
 variable's lvalue in the performance of assignment.
 The following syntax defines those PDP-11 C expressions
 that either have or produce lvalues:
 lvalue ::=
 identifier
 primary [expression]
 lvalue . identifier
 primary -> identifier
 *

 expression
 (lvalue)
 These expressions represent, respectively:
 .
 Identifiers of scalar variables, structures, and unions
 .
 References to scalar array elements
 .
 Pointers to structure and union members, except for
 references to fields that are not lvalues
 .
 References to pointers (also called dereferenced pointers;
 an asterisk (
 *

) followed by an address-valued expression)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p71.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

 .
 Any of the above expressions, enclosed in parentheses
 All lvalue expressions represent a single location in a
 computer's memory. Chapter 2 shows the difference between
 lvalues and rvalues.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p71.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.2 Overview of the PDP-11 C Operators
 You can use the simpler variable identifiers and constants
 in conjunction with PDP-11 C operators to create more
 complex expressions. Table 4-1 presents the set of PDP-11 C
 operators.

 The operators fall into the following categories:
 .
 Unary operators take a single operand.
 .
 Binary operators take two operands and perform a
 variety of arithmetic and logical operations.
 .
 The conditional operator is the only ternary operator. It
 takes three operands and evaluates either the second or
 third expression, depending on the evaluation of the first
 expression.
 .
 Assignment operators assign a value to a variable,
 optionally performing an additional operation before
 the assignment takes place.
 .
 The comma operator guarantees left-to-right evaluation
 of comma-separated expressions.
 .
 Primary operators usually modify or qualify identifiers
 (see Section 4.3 for more information).
 Table 4-2 presents the precedence by which the compiler
 evaluates operations. Those operators with the highest
 precedence appear at the top of the table; those with the
 lowest appear at the bottom. Operators of equal precedence
 appear in the same row.

 Consider the following expression:
 A+B*C
 The identifiers B and C are multiplied first because the
 multiplication operator (
 *

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p72.decw$book (1 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

) has a higher precedence than the
 addition operator (+). The associative rule applies to each
 row of operators. Consider the following expression:
 A/B/C
 This expression is evaluated as follows because the division
 operator evaluates from left to right.
 (A/B)/C

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p72.decw$book (2 of 2)1/25/06 3:41 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.3 Primary Expressions and Operators
 Simple expressions are called primary expressions ; they
 denote values. Primary expressions include previously
 declared identifiers, constants (including strings), array
 references, function calls, and structure or union references.
 The syntax descriptions of the primary expressions are as
 follows:
 primary ::=
 identifier
 constant
 string-literal
 (expression)
 The simplest forms are identifiers, such as variable names
 and string or arithmetic constants. Other forms are
 expressions (delimited by parentheses), function calls, array
 references, lvalues and rvalues, and structure and union
 references.

 4.3.1 Parenthetical Expressions
 An expression within parentheses has the same type and
 value as the same expression without parentheses. As in
 declarations, any expression can be delimited by parentheses
 to change the grouping of the operators in a larger expression.

 4.3.2 Function Calls
 A function call is a primary expression followed by
 parentheses. The parentheses may contain a list of
 arguments (separated by commas) or may be empty.
 An undeclared function is assumed to be a function
 returning int . If you declare an identifier as a ``function
 returning . . . '', but use the identifier in a context other
 than a function call, it converts to ``the address of function
 returning . . . ''. When you pass an argument that is an
 array or function, specify the identifier in the argument list.
 The compiler passes the address of the array or function
 to the called routine. This means that the corresponding
 parameters in the called function must be declared as
 pointers.
 The following is an example of a function declaration and a
 function call:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p75.decw$book (1 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 int f1(); /* Function declaration */
 .
 .
 .
 f1(); /* Function call */
 Consider the following declaration:
 double atof();
 The previous example declares a function returning double .
 You can then use the identifier atof in a function call as
 follows:
 result = atof(c);
 You can use the identifier atof in other contexts without the
 parentheses as follows:
 dispatch(atof);
 The identifier atof converts to the address of that function,
 and the address is passed to the function dispatch.
 Functions can also be called by means of a pointer to a
 function. Consider the following pointer declaration and
 assignment:
 double (*pfd)();
 .
 .
 .
 pfd = atof;
 To call the function, you can specify the following form:
 result = (*pfd)(c);
 PDP-11 C also accepts a pointer to a function as shown in
 the following example:
 result = pfd (c);

 4.3.3 Array References
 Use the bracket operators ([]) to refer to elements of arrays.
 In an array defined as having three dimensions, you can
 refer to a specific element within the array, as in the
 following example:
 int *x; /* Pointer to integer */
 int sample_array[10][5][2]; /* Array declaration */
 int i = 10;
 sample_array[9][4][1] = i; /* Assign value to element */
 This example assigns a value of 10 to element sample_
 array[9][4][1].
 If an array reference is not fully qualified, it refers to the
 address of the first element in the dimension that is not

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p75.decw$book (2 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 specified.
 Consider the following different assignments:
 x = sample_array[9][4]; /* Assigns the address of */
 /* sample_array[9][4][0] to x. */
 x = 10; / Assigns a value of ten to */
 /* the element sample_array[9][4][0] */
 /* which x now points to. */
 A reference to an array name with no bracket operators is
 often used to pass the array's address to a function, as in the
 following statement:
 funct(sample_array);
 You can also use the bracket operators to perform general
 pointer arithmetic as follows:
 addr[intexp]
 In this example, addr is the address of some previously
 declared object (pointer-valued) and intexp is an integer-
 valued expression. The result of the expression is scaled or
 multiplied by the size in bytes of the addressed object. If
 intexp is a positive integer, the result is a subsequent object of
 this size; if intexp is 0, the result is the same object; if intexp
 is negative, the result is a previous object. The expressions
 *

 (addr + intexp) and addr[intexp] are equivalent because
 both expressions reference the same memory location;
 *

 (addr + intexp) points to the same element as addr[intexp].

 4.3.4 Structure and Union References
 A member of a structure or union can be referenced with
 either of two operators: the dot (.) or the arrow (->).
 A primary expression followed by a period followed by an
 identifier refers to a member of a structure or union and
 is itself a primary expression. The first expression must be
 an lvalue naming a structure or union. The identifier must
 name a member of that structure or union. The result is a
 reference (if the member is a scalar) to the named member
 of the structure or union. The name of the desired member
 must be preceded by a period-separated list of the names of
 all higher level members. For more information concerning
 structures and unions, refer to Chapter 5.
 A primary expression followed by an arrow (specified with a

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p75.decw$book (3 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 hyphen (-) and a greater-than symbol (>)) followed by an
 identifier refers to a member of a structure or union. The
 first expression must be a pointer to a structure or a union.
 The identifier following the arrow operator must name a
 declared member of that structure or union. The result is a
 reference to the named member.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p75.decw$book (4 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.4 Unary Operators
 You can form expressions by combining a unary operator
 with a single operand. All unary operators are of equal
 precedence and group from right to left. They perform the
 following operations:
 .
 Negate a variable arithmetically (-) or logically (!)
 .
 Increment (++) and decrement (- -) variables
 .
 Find addresses (&) and dereference pointers (
 *

)
 .
 Calculate a one's complement (~)
 .
 Force the conversion of data from one type to another
 (the cast operator)
 .
 Calculate the sizes of specific variables or of types (sizeof)
 .
 Force integral promotions (+)

 4.4.1 Negating Arithmetic and Logical Expressions
 Consider the syntax of the following expression:
 - expression
 This is the arithmetic negative of expression. The compiler
 performs the arithmetic conversions. The negative of an
 unsigned short int is computed by subtracting its value
 from 2

 16
 . The negative of an unsigned long int is computed
 by subtracting its value from 2

 32
 .
 Consider the following expression:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p76.decw$book (1 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 !expression
 The result is the logical (Boolean) negative of the expression.
 If the result of the expression is 0, the negated result is 1; if
 the result of the expression is not 0, the negated result is 0.
 The type of the result is int . The expression can be a pointer
 (or another address-valued expression) or an expression of
 any arithmetic type.

 4.4.2 Incrementing and Decrementing Variables
 Consider the syntax of the following expression:
 ++lvalue
 The object that the lvalue refers to in the expression is
 incremented before its value is used. After evaluating this
 expression, the result is the incremented rvalue, not the
 corresponding lvalue. For this reason, expressions that use
 the increment and decrement operators in this manner
 cannot appear by themselves on the left side of an assignment
 expression where an lvalue is needed.
 Consider the syntax of the following expression:
 lvalue++
 The object that the lvalue refers to in the expression
 increments after its value is used. The expression evaluates
 to the value of the object before the increment, not the
 incremented variable's lvalue.
 If the operand is a pointer, the address is incremented by the
 length of the addressed object, not by the value 1. If declared
 as an integer or floating point, the variable increases by the
 value 1.
 If the lvalue points to another variable:
 - -lvalue
 lvalue- -
 then these expressions decrement not by 1, but by the size of
 the addressed object. The data type of the variable determines
 the amount of the increment or decrement. If declared as a
 pointer, the variable increments or decrements by the size of
 the addressed object's data type. For example, if declared as a
 pointer to integer, the variable increments or decrements by
 the value 2. For example:
 int *ip;
 char *cp;
 ip--; /* decremented by 2 */
 --cp; /* decremented by 1 */
 When using the increment and decrement operators, do not

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p76.decw$book (2 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 depend on the order of evaluation of expressions. Consider
 the following ambiguous expression:
 k = x[j] + j++;
 Is the value of variable j in x[j] evaluated before or after the
 increment occurs? Do not assume which expressions the
 compiler will evaluate first. To avoid ambiguity, increment
 the variable in a separate statement.

 4.4.3 Computing Addresses and Dereferencing Pointers
 (&
 *

)
 Consider the syntax of the following expression:
 & identifier
 The expression results in the lvalue (address) of the identifier.
 The ampersand operator (&) may not be applied to register
 variables or to bit fields in structures or unions.
 When an expression evaluates to an address, as in the
 following example, the address is used to indirectly access
 the object to which the address refers:
 * pointer
 An expression using the indirection operator (
 *

) evaluates
 to the object pointed to by a pointer or by an address-valued
 expression.

 4.4.4 Calculating a One's Complement (~)
 Consider the syntax of the following expression:
 ~ expression
 The result is the one's complement of the evaluated
 expression; it converts each 1-bit into a 0-bit and vice versa.
 The expression must be integral (an integer or character).
 The compiler performs necessary arithmetic conversions.

 4.4.5 Forcing Conversions to a Specific Type (Cast
 Operator)
 The cast operator forces the conversion of its operand to a
 void type, qualified scalar type, or unqualified scalar type.
 You can also cast to a typedef if it represents a scalar type.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p76.decw$book (3 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 Structures and unions may not appear in a cast operator;
 however, pointers to structures or unions may. The operator
 consists of a data type name, in parentheses, preceding the
 operand expression, as follows:
 (type-name) expression
 The resulting value of the expression converts to the named
 data type, as if the expression were assigned to a variable of
 that type. If the operand is a variable or constant, its value
 converts to the named type. The variable's contents do not
 change. The type name has the following formal syntax:
 type-name ::= type-specifier abstract-declarator
 abstract-declarator ::=
 empty
 (abstract-declarator)
 *

 abstract-declarator
 abstract-declarator ()
 abstract-declarator [constant-expression]
 Abstract declarators may include the brackets and paren-
 theses that indicate arrays and function calls. However, cast
 operations cannot force the conversion of any expression to
 an array, function, structure, or union. The brackets and
 parentheses are used in operations such as the following
 example, which casts identifier P1 to ``pointer to array of
 int .''
 (int (*)[]) P1
 This kind of cast operation does not change the contents of
 P1; it only causes the compiler to treat the value of P1 as a
 pointer to such an array.

 4.4.6 Calculating Sizes of Variables and Data Types
 (sizeof)
 Consider the syntax of the following expressions:
 sizeof expression
 sizeof (type-name)
 The result is the size, in bytes, of the operand. In the first
 case, the result of sizeof is the size determined by the type
 of the expression. In the second case, the result is the size,
 in bytes, of an object of the named type. The syntax of type-
 name is the same as that for the cast operator. While you
 may take the size of unions and structures, you cannot cast
 them. For example:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p76.decw$book (4 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 int i;
 char a[10];
 i = sizeof a; /*value 10*/
 i = sizeof (short int); /*value 2*/
 See Section 4.4.5 for more information concerning the cast
 operator.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p76.decw$book (5 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.5 Binary Operators
 The binary operators are categorized as follows:
 .
 Additive operators: addition (+) and subtraction (-)
 .
 Multiplication operators: multiplication (
 *

), modulo (%),
 and division (/)
 .
 Equality operators: equality (= =) and inequality (!=)
 .
 Relational operators: less than (<), less than or equal to
 (<=), greater than (>), and greater than or equal to (>=)
 .
 Bitwise operators: AND (&), OR (|), and XOR (^)
 .
 Logical operators: AND (&&) and OR (k)
 .
 Shift operators: left shift (<<) and right shift (>>)
 The following sections describe these binary operators.

 4.5.1 Additive Operators (+ -)
 The additive operators (+) and (-) perform addition and
 subtraction. Their operands are converted, if necessary,
 following the usual arithmetic conversions described in
 Section 4.9.1.
 You can increment an array pointer by adding an integral
 variable to the address of an array element. The compiler
 calculates the size of one array element, multiplies that by
 the integer to obtain the offset value, and then adds the offset
 value to the address of the designated element. For example:
 int arr[10];
 int *p = arr;
 p = p + 3; /* Increments by 2*3 */
 You may subtract a value of any integral type from a pointer
 or address; in that case, the same conversions apply as for
 addition.
 If you subtract two addresses of objects of the same type, the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p77.decw$book (1 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 result converts (divides by the length of the object) to an int
 representing the number of objects separating the addressed
 objects. The result of this conversion is unpredictable unless
 the two objects are in the same array.

 Note

 The size of objects of type int vary among
 implementations of the C language. In PDP-11
 C, the data types int and short are of the same size,
 16 bits.

 4.5.2 Multiplication Operators (
 *

 / %)
 The multiplication operators (
 *

), (/), and (%) perform
 arithmetic conversions, if necessary. The binary operator (
 *

)
 performs multiplication. The binary operator (/) performs
 division. When integers are divided, truncation is toward
 zero.
 The binary modulo operator (%) divides the first operand
 by the second and yields the remainder. Both operands must
 be integral. The sign of the result is the same as the sign of
 the quotient. If variable b is not 0, the following statement is
 always true:
 a = (a/b)*b + a%b;

 4.5.3 Equality Operators (= = !=)
 The equality operators equal to (= =) and not equal to (!=)
 perform the necessary arithmetic conversions on their two
 operands. These operators produce a result of type int . In the
 following statement, the result is the value 1 if both relational

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p77.decw$book (2 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 expressions have the same truth value , and 0 if they do not.
 a<b == c<d
 Two pointers or addresses are equal if they identify the same
 storage location. You can compare a pointer or address with
 an integer, but the result is not portable unless the integer is
 0. A null pointer is considered equal to 0.
 Although different symbols are used for assignment and
 equality, (=) and (= =) respectively, PDP-11 C allows either
 operator in some contexts, so you must be careful not to
 confuse them. For example, consider the following:
 if (x=1) statement-1;
 else statement-2;
 In the previous example, statement-1 always executes, since
 the result of assignment x=1 delimited by parentheses is
 equivalent to the value of x , which is equal to 1, true.

 Note

 The following example shows a common error in
 programming comparisons:
 int x;
 if (x=1) /* Common error in programming comparisons */
 if (1==x) /* This syntax does the comparison */
 if (1=x) /* This syntax causes a compiler error */
 To avoid this error, use the syntax if (1= =x) for
 comparisons because omitting the second equal sign
 causes a compiler error.

 4.5.4 Relational Operators (< > <= >=)
 The relational operators compare two operands and produce
 a result of type int . The result is the value 0 if the relation
 is false, and 1 if it is true. The operators are less than (<),
 greater than (>), less than or equal to (<=), and greater than
 or equal to (>=). The compiler performs necessary arithmetic
 conversions.
 If you compare two pointers or addresses, the result depends
 on the relative locations of the two addressed objects. Pointers
 to objects at lower addresses are less than pointers to objects
 at higher addresses. If two addresses indicate elements in the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p77.decw$book (3 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 same array, the address of an element with a lower subscript
 is less than the address of an element with a higher subscript.
 The relational operators group from left to right. However,
 note that in the following example, the first statement
 compares the variable c with 0 or 1 (possible results of a<b);
 it does not mean ``if b is between a and c . . . ''. The second
 statement shows the proper way to perform this test.
 if (a<b<c)...
 if (a<b && b<c)...

 4.5.5 Bitwise Operators (& | ^)
 The bitwise operators may be used only with integral
 operands: with variables of types char and with int of
 all sizes. The compiler performs the necessary arithmetic
 conversions. The result of the expression is the bitwise AND
 (&), XOR-exclusive OR (^), or OR (|) of the two operands.
 The compiler always evaluates all operands. Figure 4-1
 shows the effects of Boolean algebra when using the bitwise
 operators.
 In Boolean algebra, PDP-11 C compares values bit by bit.
 If you are using the bitwise AND, and are comparing a bit
 value 1 and a bit value 0, the result is 0. When using the
 bitwise AND, both compared bits must be 1, for the result to
 be 1. When using the bitwise OR, either bit value can be 1 for
 the result to be 1. When using the bitwise EXCLUSIVE-OR,
 either value, but not both, must be 1 for the result to be 1.

 4.5.6 Logical Operators (&& | |)
 The logical operators are AND (&&) and OR (| |). These
 operators guarantee left-to-right evaluation. The result of
 the expression (of type int) is either 0 (false) or 1 (true). If
 the compiler can make an evaluation by examining only the
 left operand, it does not evaluate the right operand. Consider
 the following expression:
 E1 && E2
 The result is 1 if both its operands are nonzero, or 0 if one
 operand is 0. If expression E1 is 0, expression E2 is not
 evaluated. Similarly, the following expression is 1 if either
 operand is nonzero, and 0 otherwise. If expression E1 is
 nonzero, expression E2 is not evaluated.
 E1 || E2
 The operands of logical operators need not have the same
 type, but each must be one of the fundamental types or must

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p77.decw$book (4 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 be a pointer or other address-valued expression.

 4.5.7 Shift Operators (<< >>)
 The shift operators (<<) and (>>) take two operands, both
 of which must be integral. The compiler performs necessary
 arithmetic conversions on both operands if they are not
 integers. The right operand is then converted to int , and the
 type of the result is the type of the left operand. Consider the
 following expression:
 E1 << E2
 The result is the value of expression E1 shifted to the left
 by E2 bits. The compiler clears vacated bits. Consider the
 following expression:
 E1 >> E2
 The result is the value of expression E1 shifted to the right by
 E2 bits. The compiler clears vacated bits if E1 is unsigned ;
 otherwise, the bits are filled with a copy of E1's sign bit.
 The result of the shift operation is undefined if the right
 operand (E2 in the previous example) is negative or if the
 value of E2 is greater than 16.
 Figure 4-2 illustrates the shift operators.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p77.decw$book (5 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.6 Conditional Operator (?:)
 The conditional operator (?:) takes three operands. It tests the
 result of the first operand and then evaluates one of the other
 two operands based on the result of the first. For example,
 consider the following:
 E1 ? E2 : E3
 If expression E1 is nonzero (true), then E2 is evaluated. If
 E1 is 0 (false), E3 is evaluated. Conditional expressions group
 from right to left. The compiler makes conversions in the
 following order:
 1. If possible, the arithmetic conversions are performed on
 expressions E2 and E3, so that they will result in the same
 type.
 2. If expressions E2 and E3 are address expressions
 indicating objects of the same type, the result has that
 type.
 3. One of the E2 and E3 operands may be an address
 expression, and the other, the constant 0. The result has
 the type of the addressed object.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p80.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.7 Assignment Expressions and Operators
 PDP-11 C has several assignment operators. An assignment
 is not only an operation but is also an expression. Assignments
 result in the value of the target variable after the assignment.
 They can be used as subexpressions in larger expressions.
 The set of assignment operators consists of the equal sign
 (=) alone and in combination with binary operators. An
 assignment expression has two operands (an lvalue and an
 expression separated by one of these operators). Consider the
 following assignment expression:
 E1 += E2;
 This is equivalent to the following expression:
 E1 = E1 + E2;
 The expression E1 is evaluated once and must result in an
 lvalue. The type of the assignment expression is the type
 of E1, and the result is the value of E1 after the operation.
 You must delimit some expressions in parentheses if the
 expressions possibly contain other operators of a lower
 precedence. Consider the following expression:
 a *= b + 1;
 This is the same as the following expression:
 a = a * (b + 1);
 In the following simple assignment expression, the value of
 expression E2 replaces the previous object of E1.
 E1 = E2
 The following expression adds 100 to the contents of a_
 number[1].
 a_number[1] += 100;
 The result of this expression is the result of the addition and
 has the same type as a_number[1].
 If both assignment operands are arithmetic, the right operand
 is converted to the type of the left before the assignment (see
 Section 4.9.1).
 You can use the assignment operator (=) to assign values to
 structure and union members. You can assign one structure
 value to another as long as you define the structures to be
 the same type. With all other assignment operators, all right
 operands and all left operands must either be pointers or
 evaluate to arithmetic values. If the operator is (-=) or (+=),
 the left operand may be a pointer, and the right operand

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p81.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 (which must be integral) is converted in the same manner
 as the right operand in the binary plus (+) and minus (-)
 operations.
 Using a cast, you can assign an address to an integer, an
 integer to a pointer, and the address of an object of one type
 to a pointer of another type. Such assignments are simple
 copy operations, with no conversions. This usage may cause
 addressing exceptions when you use the resulting pointers.
 However, if the constant 0 is assigned to a pointer, the result
 is a null pointer. The equality operators distinguish a null
 pointer from a pointer that points to any object.

 Note

 Assigning an integer to a pointer, or a pointer to an
 integer, is nonportable and not recommended.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p81.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.8 Comma Expression and Operator (,)
 When two expressions are separated by the comma operator,
 they evaluate from left to right, and the compiler discards the
 result of the left expression. If you separate many expressions
 with commas, the compiler discards all but the result of
 the rightmost expression, yet the side effect of the other
 expressions remains.
 The following example shows the use of the comma operator
 in both the initialization and incrementation segments of a
 for loop. Using the comma operator, multiple operations may
 be executed as one.
 During the initialization, the variable x is assigned the value
 0, the variable y is assigned the value 1, and the variable
 z is assigned the value 0. Each time the loop executes, the
 expression given as the incrementation expression is executed.
 Using the comma operator, this expression increments x ,
 adds 2 to the variable y , and adds 10 to the value of z .
 #include <stdio.h>
 int main ()
 {
 int x,y,z;
 for (x=0, y=1, z=0; x < 3; x++, y+=2, z+=10)
 {
 printf("x: %d y: %d z: %d \n", x, y, z);
 }
 }
 The output is as follows:
 x: 0 y: 1 z: 0
 x: 1 y: 3 z: 10
 x: 2 y: 5 z: 20
 The type and value of the result of a comma expression are
 the type and value of the rightmost operand. The operator
 evaluates operands from left to right.
 You must delimit comma expressions with parentheses if
 they appear where commas have some other meaning, as
 in argument and initializing lists. Consider the following
 expression:
 f(a, (t=3,t+2), c)
 This example calls the function f with the arguments a, 5,
 and c. In addition, variable t is assigned the value 3.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p82.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 4.9 Data Type Conversions
 PDP-11 C performs data type conversions in four situations:
 .
 When two or more operands of different types appear in
 an expression (including an assignment).
 .
 When arguments other than long integers, addresses, or
 double-precision floating-point numbers are passed to a
 function.
 .
 When arguments that do not conform exactly to the
 parameters declared in a function prototype are passed to
 a function.
 .
 When the data type of an operand is deliberately
 converted by the cast operator. See Section 4.4.5 for
 more information on the cast operator.

 4.9.1 Converting Operands
 The following rules (referred to as the usual arithmetic
 conversions) govern the conversion of operands in arithmetic
 expressions. Although they do not specify explicit conversions
 at the machine-language level, the rules govern in the
 following order:
 1. First, if either operand has type long double , it will
 convert the other operand to type long double .
 2. Otherwise, if either operand has type double , it will
 convert the other operand to type double .
 3. Otherwise, if either operand has type float , it will convert
 the other operand to type float .
 4. Otherwise, the integral promotions are performed on both
 operands. Then the following rules are applied:
 a. If either operand has type unsigned long int , the
 other operand is converted to unsigned long int .
 b. Otherwise, if one operand has type long int and the
 other has type unsigned int , the operand of type
 unsigned int is converted to long int .
 c. Otherwise, if either operand has type long int , the
 other operand is converted to long int .
 d. Otherwise, if either operand has type unsigned int ,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p83.decw$book (1 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 the other operand is converted to unsigned int .
 e. Otherwise, both operands have type int .

 Note

 The values of floating operands and of the results of
 floating expressions may be represented in greater
 precision and range than required by the type; the
 types are not changed thereby.

 The arithmetic conversions are performed on all arithmetic
 operands. Some operators, such as the shift operators (>>)
 and (<<), require integers as operands. If one operand is of
 type float or double , you cannot meet this requirement.
 PDP-11 C attempts to perform arithmetic in single precision.
 If an operand of type float appears in an expression, it is
 treated as a single-precision object unless the expression also
 involves an object of type double , in which case the usual
 arithmetic conversion applies.
 When an operand of type double is converted to float (for
 example, by an assignment), the compiler rounds the operand
 before truncating it to float .
 The compiler may convert a float or double value operand
 to an integer by assignment to an integral variable. In PDP-
 11 C, the truncation of the float or double value is always
 toward zero.
 Conversions also take place between the various kinds
 of integers. In PDP-11 C, variables of type char are
 bytes treated as signed integers. When a longer integer is
 converted to a shorter integer or to char , it is truncated on
 the left; excess bits are discarded. For example:
 int i;
 char c;
 i = 0xFF41;
 c = i;
 This code assigns hex 41 (' A ') to variable c . The compiler
 converts shorter signed integers to longer ones by sign
 extension.
 Whenever the compiler combines an unsigned integer and
 a signed integer, the signed integer converts to unsigned

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p83.decw$book (2 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 and the result is unsigned . All conversions from signed
 to unsigned perform an intermediate conversion to int .
 For example, the compiler converts a char operand to an
 unsigned version by first converting it to a signed int and
 then by truncating it to form the unsigned version. All
 conversions from unsigned to signed (such as conversions
 done with the cast operator) involve an intermediate
 conversion to unsigned int .
 You can also add integers to pointers, in which case the
 integer is scaled (multiplied) by a factor that depends on the
 type of the object to which the pointer points. See Section 4.5.1
 for more information concerning scaling pointers.

 4.9.2 Converting Function Arguments
 The data types of function arguments are assumed to
 match the types of the formal parameters unless a function
 prototype declaration is present. In the presence of a function
 prototype, all arguments in the function invocation are
 compared for assignment compatibility to all parameters
 declared in the function prototype declaration. If the type of
 the argument does not match the type of the parameter but is
 assignment compatible, PDP-11 C converts the argument to
 the type of the parameter (see Section 4.9.1). If an argument
 in the function invocation is not assignment compatible to
 a parameter declared in the function prototype declaration,
 PDP-11 C generates an error message.
 Unless a function prototype is present, all arguments of type
 float convert to double ; all variables of type char convert to
 int ; all variables of type unsigned char convert to unsigned
 int ; and an array or function name converts to the address
 of the named array or function. The compiler performs no
 other conversions automatically, and any mismatches after
 these conversions are programming errors.
 Use the cast operator to pass arguments to parameters of
 different types. See Section 4.4.5 for more information on
 the cast operator. For more information concerning the
 manipulation of argument lists, refer to Chapter 2.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p83.decw$book (3 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5. Data Types and Declarations
 The values of both constants and variables have data types .
 This chapter discusses the following topics with respect to
 data types:
 .
 Constants
 .
 Variables
 .
 Integers
 .
 Characters
 .
 Floating-point values
 .
 Pointers
 .
 Enumerated types
 .
 Arrays
 .
 Structures and unions
 .
 The void keyword
 .
 The typedef keyword
 .
 Interpreting variable declarations

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p84.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.1 Constants
 You can represent data in PDP-11 C using constants. A
 constant is a primary expression with a defined value
 that does not change. You may represent a constant in a
 literal form, which contains the explicit numbers, letters,
 and operators that comprise the constant, or you may
 define a symbol to represent the constant value. (For more
 information concerning symbolic representation of constants,
 refer to the section on token definitions in Chapter 7.)
 Constants have data types, as does all data in PDP-11 C.
 The data type determines the amount of storage needed and
 determines how to interpret the stored object or constant
 value. The compiler determines the data type of constants by
 the way in which their values are represented in the source
 code.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p85.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.2 Variables
 You can also represent data in PDP-11 C using variables
 whose values can change throughout the execution of the
 program. All variables used in a program must be declared.
 When you declare a variable, you specify the data type
 of the stored object. An object , in PDP-11 C, is a value
 requiring storage. Declarations determine the size of storage
 allocated, whereas definitions force the allocation of storage.
 See Section 5.2.1 for more information concerning data types
 of variables.
 Unlike constants, variables can be declared and defined. Most
 variable declarations are also definitions because storage is
 allocated at that point in the program. To declare a variable,
 specify the data type. To define a variable, assign the proper
 storage class to the variable and place the variable declaration
 within the program structure. If you initialize a variable in
 the declaration, the variable is defined. For more information
 concerning variable definitions, scope, and storage allocation,
 refer to Chapter 6.

 5.2.1 Classification of Variables
 There are two kinds of variables: scalar and aggregate .
 Scalar variables have objects that can be manipulated
 arithmetically in their entirety. These objects are single
 characters, individual numbers, and pointers. Aggregate
 variables are data structures (arrays, structures, and unions)
 that are comprised of distinct elements (members) that you
 can declare to be of either a scalar or aggregate data type.

 5.2.1.1 Data Type Keywords
 To declare or define variables, you need to know the PDP-
 11 C keywords associated with each data type. Table 5-1
 lists the PDP-11 C data type keywords according to
 classification.

 In the sections that follow, the keywords and operators used
 to declare variables of given data types are listed in the section
 header for ease of reference.
 PDP-11 C also supports the type qualifiers const and

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p86.decw$book (1 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 volatile . For information concerning these type qualifiers,
 refer to Chapter 6.

 5.2.1.2 Format of a Variable Declaration
 A variable declaration can be composed of the following items:
 .
 Data type specifiers, such as a data type or data type
 qualifier keyword, one structure, union, or enum tag, and
 if necessary, a typedef name.
 Any of these gives the data type of the declared object.
 .
 An optional storage class keyword.
 A storage class keyword affects the lifetime of a variable
 and determines how it is stored. If you omit the storage
 class keyword, there is a default storage class that
 depends upon the location of the declaration within the
 program. The positions of the storage class keywords and
 the data type keywords are interchangeable.
 .
 Declarators, which list the identifiers of the declared
 objects and which may contain operators that declare a
 pointer, function, or array of objects of the declared type.
 .
 Initializers for each declared object or aggregate element
 giving the initial value of a scalar variable or the initial
 values of structure members or array elements.
 An initializer consists of an equal sign (=) followed by
 either a single expression or a comma-list of one or more
 expressions in braces.
 For example, the following declaration both declares and
 defines the integer variable, var_number , which has an initial
 value of 10.
 int var_number = 10;
 The keyword int specifies the amount of storage needed on
 a PDP-11 system for an integer. The identifier var_number
 follows. The equality operator (=) initializes the variable with
 the literal constant 10; for the initialization to take place,
 storage is allocated and the variable is defined. Declarations
 must end in a semicolon (;).
 The variable declaration in the previous example was not
 difficult to interpret, but even experienced C programmers
 have difficulty interpreting complex variable declarations.
 See Section 5.13 for more information concerning the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p86.decw$book (2 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 interpretation of PDP-11 C variable declarations.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p86.decw$book (3 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.3 Integers (int, long, short, char, signed, unsigned)
 Integer variables are declared with the keywords int , long ,
 short , char , signed , and unsigned . The following is an
 example of an integer declaration:
 int x;
 Character variables are declared with the keyword char . An
 example of a character declaration with the initialization of a
 character variable is as follows:
 char ch = 'a';
 Table 5-2 specifies the sizes and ranges of integers.

 In PDP-11 C, values of the int data type require 16 bits of
 storage. (This is different from VAX C where the int size is
 32 bits.) Therefore, note that values of the int and short data
 types require an identical amount of storage.
 The following sections describe the constants that you can
 assign to the integer variables.

 5.3.1 Integer Constants
 There are three types of integer constants: decimal,
 hexadecimal, and octal. These integer constants consist of
 the following:
 .
 Decimals : 0 to 9
 An integer constant is assumed to be decimal unless it
 begins with 0, 0x, or 0X.
 .
 Hexadecimals : 0 to 9, a to f, A to F
 Use the prefix 0x or 0X to specify hexadecimal numbers.
 .
 Octals : 0 to 7
 Use prefix 0 to specify octal numbers.
 To specify an unsigned constant, use the suffix u or U.
 To specify a long integer constant (4 bytes, 1 longword), use
 the suffix l or L, or specify a constant value which is too large
 for an int . Integer constants that exceed a longword are
 treated as programming errors.
 Integer constants must not include a decimal point; constants
 with a decimal point are floating point constants.
 Character constants, such as ' a ' and ' $ ' , are also valid

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p88.decw$book (1 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 integer constants. Their integer values in PDP-11 C are the
 values of the corresponding ASCII codes.
 Some examples of valid integer constants could include:
 133L /* Long decimal integer */
 1234U /* Unsigned integer constant */
 0x17A /* Hexadecimal integer */
 056 /* Octal integer */
 'a' /* Decimal 97 */
 '$' /* Decimal 36 */
 Examples of invalid integer constants include:
 143. /* Includes a decimal point; *
 * Is a floating constant */
 4444444444 /* Out of range for int */
 77af /* Hexadecimal constants must be *
 * prefixed with "0x" */

 5.3.2 Character Constants
 A character constant is an integer value, requiring 16 bits (1
 word) of memory, that is enclosed in apostrophes. Character
 constants can be a single ASCII character, as in the following
 example:
 char ch = 'a'; /* Lowercase letter 'a' is a constant *
 * assigned to ch. */
 The character constant ' a ' has the ASCII value of 97. If
 the value is that of a single character constant, the compiler
 stores the character in the low order byte and pads the
 remaining byte with a NUL character (' \0 ').
 Character constants do not have to be single characters, as
 shown in the following example:
 int two_bytes = 'ab'; /* This constant contains 2 characters */
 printf("%c\n", two_bytes);
 printf("%.2s", &two_bytes); /* String with maximum 2 characters */
 Sample output from the program follows:
 $ run example
 a
 ab
 $
 If you print variable two_bytes as a character, the printf
 function prints only the character located in the low order
 byte of the integer allocation. To print both of the characters
 in the word allocated to the variable, you have to print the
 variable as a string and pass the address of the integer
 variable as an argument. If you print the integer variable

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p88.decw$book (2 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 as a string, be sure to specify a precision of at most 2 since
 you can never be sure if the next byte in the string is a
 terminating NUL character.
 The apostrophe (') and quotation mark (") are significantly
 different punctuation marks in PDP-11 C, indicating a
 character constant and a string constant, respectively.
 One context in which the difference is important is in an
 argument list. If you specify a function argument as a string,
 and wish to pass a character constant, you must enclose the
 character in quotation marks, not apostrophes, even if the
 string is only 1 to 2 characters in length. See Section 5.8 for
 more information concerning character-string constants.

 5.3.3 Escape Sequences
 In PDP-11 C, escape sequences are character strings that
 represent a single printing or nonprinting character. The
 term escape sequences does not designate a string beginning
 with the ASCII character ESC, as in VT100 escape sequences.
 Table 5-3 presents the escape sequences that specify the
 nonprinting characters, the apostrophe, and the backslash
 (\).

 An escape sequence, such as ' \n ' , denotes a single character.
 The form ' \ddd ' is used to specify any byte value (usually
 an ASCII code), where the digits ddd are one to three octal
 digits. The octal digits are limited to 0 to 7. A common use is
 to specify the ASCII NUL character, as follows:
 '\0'
 Similarly, the form ' \xddd ' is used to specify any byte value
 (usually an ASCII code), where the digits ddd are used to
 specify one or more hexadecimal digits.
 The following are examples of valid escape sequences of the
 form ' \ddd ' and ' \xddd ' . Both of these escape sequences
 are used to specify an a-umlaut (ä) on a VT2xx terminal in
 octal and hexadecimal digits, respectively.
 '\344'
 '\xe4'
 If the character following the backslash in an escape sequence
 is illegal, the backslash is ignored; that is, the value of the
 character constant is the same as if the backslash were not
 present.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p88.decw$book (3 of 3)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.5 Pointers
 Pointers in PDP-11 C are variables that contain 16-bit
 addresses of other objects. A pointer is declared with the
 asterisk notation and the data type of the object to which it
 points. For example:
 int *px;
 Identifier px is declared as a pointer to a variable of type
 int . The expression
 *

 px yields the object to which px points,
 therefore
 *

 px is an int .
 Static and extern pointers are initialized to NULL unless
 initialized otherwise. A NULL pointer is a pointer variable
 that has been assigned the integer constant 0. An auto
 pointer that is not initialized will initially contain an
 undefined value.
 An attempt to access data by means of a NULL or an
 uninitialized pointer may result in a hardware error or
 other, undefined behavior.
 The valid pointer operators are assignments of pointers of the
 same type, adding or subtracting a pointer and an integer,
 subtracting or comparing two pointers to members of the
 same array, and assigning or comparing to zero.
 For example, if p is a pointer to some element of an array,
 then p++ increments p to point to the next element. p+=i
 increments p to point i elements beyond where it currently
 points.
 The unary asterisk (
 *

) is also the indirection operator in
 PDP-11 C. The unary asterisk operates as follows:
 x = *px;
 This statement assigns the value of the object pointed to by
 px to variable x . Since the asterisk can be used in any sort of
 declarator, you can have pointers to scalars, to functions, to

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p92.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 other pointers, to structures, and so forth.
 The ampersand (&) operator is used to take the address of
 an object. For example, consider the following:
 px = &x;
 This statement assigns the address of variable x to pointer px .
 After an assignment such as this, a reference to
 *

 px yields the
 value of x .
 It is illegal to apply the ampersand operator to bit-fields or
 register variables. In both cases an error will be issued.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p92.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.6 Enumerated Types (enum)
 An enumerated type is a user-defined data type that is
 not derived from other fundamental types. Each listed
 enumerator is associated with an incremented integer
 constant starting with zero, unless the enumerators are
 explicitly assigned. The following example illustrates the
 declaration of a variable and an enumeration type or tag:
 enum shades
 {
 out, verydim, dim, prettybright, bright
 } light;
 This declaration defines the variable light to be of an
 enumerated type shades . The variable can assume any
 of the enumerated values.
 The tag shades becomes the enumeration tag of the new type;
 out , verydim , . . . , bright are the enumeration constants with
 values 0 to 4. These enumerators are the constant values of
 the type shades and can be used wherever integer constants
 are valid.
 If the tag has already been declared, you can use the tag
 as a reference to that enumerated type, as in the following
 declaration:
 enum shades light1;
 The variable light1 is an object of the enumerated data type,
 shades .
 An enum tag can have the same spelling as other identifiers
 in the same program, including variable identifiers and
 member names in structures and unions, but excluding other
 tag identifiers. However, enum constant names may not be
 the same as variables, functions, and typedef names. They
 can be the same as labels and tags. PDP-11 C allows forward
 reference to enum tags that have not yet been declared in
 the source code, but are declared further on in the program.
 Internally, each enumerator is associated with an integer
 constant; the compiler gives the first enumerator the value 0
 by default, and the remaining enumerators are incremented
 by the value 1, as they are read from left to right. Any
 enumerator can be set to a specific integer constant value.
 The enumerators to the right of such a construct (unless they
 are also set to specific values) then receive values that are 1

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p93.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 greater than the previous value. For example, consider the
 following:
 enum spectrum
 {
 red, yellow=4, green, blue, indigo, violet
 } color2;
 This declaration gives red , yellow , green , blue , . . . , the values
 0,4,5,6,
 Examining the value of a variable like color2 displays an
 integer, not a string such as red or yellow. Although they are
 stored internally as integers, regard enumerated data types
 as distinct from the fundamental types.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p93.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.7 Arrays ([])
 Arrays are declared using the square bracket notation ([]), as
 in the following declaration of a 10-element array of integers
 called table_one :
 int table_one[10];
 The type specifier int gives the data type of the elements.
 The elements of an array can be of any scalar or aggregate
 data type. The identifier table_one specifies the name of the
 array. The constant expression gives the number of elements
 in a single dimension. Array subscripts in PDP-11 C begin
 with the integer 0 (not 1); they must be integral. In the
 previous example, the first element is table_one[0] and the
 last element is table_one[9] . Unpredictable results may occur
 if you specify a subscript larger than or equal to the declared
 dimension bound; you would then be accessing objects outside
 the memory allocated to the array. PDP-11 C, like many
 other C implementations, does not perform automatic bounds
 checking.
 PDP-11 C supports multidimensional arrays: arrays
 declared as an array of arrays. Consider the following:
 int table_one[10][2];
 Here, variable table_one is a two-dimensional array
 containing 20 integers. You can use PDP-11 C operators
 in forming expressions with specific elements of an array, as
 follows:
 ++table_one[0][0]; /* Increment first element */
 In C, arrays are stored in row-major order. The element
 table_one[0][0] immediately precedes table_one[0][1] , which
 in turn immediately precedes table_one[1][0] .
 When you declare an array, either single- or multidimen-
 sional, the integer constant is optional in the first pair of
 brackets. Omission of the constant expression is useful in the
 following cases:
 .
 If the array is external, its storage is allocated by a
 remote definition. Therefore, the constant expression
 can be omitted for convenience when the array name is
 declared, as in the following example:
 extern int array1[];
 void first_function(void)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p94.decw$book (1 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 {
 .
 .
 .
 }
 In a separate compilation:
 int array1[10];
 void second_function(void)
 {
 .
 .
 .
 }
 For more information concerning external data
 declarations, refer to Chapter 6.
 .
 If the declaration of the array includes initializers, the
 size of the array can be omitted.
 char array_one[] = "Shemps"
 char array_two[] = { 'S', 'h', 'e', 'm', 'p', 's', '\0' };
 The two definitions initialize variables with identical
 elements. These arrays have seven elements: six
 characters and the NUL character (\0), which
 terminates all character strings. PDP-11 C determines
 the size of the array from the number of characters in
 the initializing character-string constant or initialization
 list.
 .
 If the array is used as a function parameter, it is defined
 in the calling function. The declaration of the parameter
 in the called function can omit the constant expression.
 The address of the beginning of the array is passed and
 subscripted references in the called function can modify
 elements of the array.
 The following example shows how a character array is
 used in this manner:
 #include <stdio.h>
 int adder()
 int main(void)
 {
 /* Initialize array */
 static char arg_str[] = "Thomas";
 int sum;

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p94.decw$book (2 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 sum = adder(arg_str); /* Pass address of array */
 printf("The sum is %d\n",sum);
 }
 /* Function adds ASCII values of letters in array */
 int adder(char param_string [])
 {
 int i, sum=0; /* Incrementor and sum */
 /* Loop until NUL char */
 for (i=0; param_string[i] != '\0'; i++)
 sum += param_string[i];
 return sum;
 }
 When the function adder is called, parameter param_
 string receives the address of the first character of
 argument arg_str , which can then be manipulated in
 adder. The declaration of param_string serves to give
 the type of the parameter (in this case, effectively pointer
 to array of char) not to reserve storage for the array.
 Note that the function adder relies on a NUL-terminated
 string.

 5.7.1 Initialization of Arrays
 When initializing array elements, separate the values with
 a comma and delimit the comma-list with braces ({ }). The
 rules for specifying a comma-list are as follows:
 .
 If the initializer for an array begins with a left brace ({),
 then the following comma-list provides initial values for
 the array elements. The list of initializers can end with
 a comma, which is ignored. The number of initializers
 cannot be greater than the number of elements.
 .
 If the initializer for a subarray does not begin with a left
 brace, then only enough elements are taken from the
 initializer list to supply values to the array's elements. In
 this case, there can be more initializers than there are
 elements, and any remaining values in the list are left to
 initialize the next aggregate.
 Initialize a single-dimension array as follows:
 int ex_array[5] = { 1, 22, 333, 4444, 55555 };
 Initialize a multidimensional array as follows:
 int ex_array[2][5] =
 {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p94.decw$book (3 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 { 1, 22, 333, 4444, 55555 },
 { 5, 4, 3, 2, 1 }
 };
 The element ex_array[0][0] has a value of 1, ex_array[0][1]
 has a value of 22, . . . , ex_array[1][0] has a value of 5, ex_
 array[1][1] has a value of 4, . . . , and so forth.
 Another method of initializing the same array is as follows:
 int ex_array[2][5] = { 1, 22, 333, 4444, 55555, 5, 4, 3, 2, 1 };
 PDP-11 C initializes the elements in row-major order.
 The leftmost brace determines the row number of a
 multidimensional array. Elements in row 0 are initialized
 before elements in row 1.
 You may omit elements in an initialization, as follows:
 int ex_array[2][5] =
 {
 { 1, 22, 333, 4444 }
 };
 The element ex_array[0][0] has the value 1, ex_array[0][1]
 has the value 22, ex_array[0][2] has the value 333, and
 ex_array[0][3] has the value 4444. Because ex_array
 is an aggregate type, the last element in the first row is
 initialized to 0. All the elements in the second row that were
 not specified in the initialization are initialized to 0.

 Note

 You cannot initialize array elements without
 initializing all preceding elements. The following
 initialization is not valid:
 example[3] = { 1 , , 3 };
 In the previous example, you have to initialize the
 first and second element before initializing the third.

 As a special case, a character array may be initialized by
 a string literal; successive characters of the string initialize
 members of the array. The trailing null is placed when the
 array is declared without bounds, or when there is room for
 it.
 For example,
 char a[] = "abc";

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p94.decw$book (4 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 char b[3] = "abc";
 char c[4] = "abc";
 is identical to:
 char a[] = {'a','b','c','\0'};
 char b[] = {'a','b','c'};
 char c[] = {'a','b','c','\0'};
 The array a contains the null because it was declared without
 bounds. The array b does not contain the trailing null
 because there was no room for it. The array c contains
 the null because there is room for it.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p94.decw$book (5 of 5)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.8 Character-String Variables and Constants (char
 *

 ,
 char[])
 PDP-11 C treats character strings as arrays; they are treated
 as the address in memory of the first character in the string.
 There are several ways to declare character-string variables.
 You can declare a character string by designating a pointer
 to the first character of that string, as in the following:
 char *ex_string = "thomasina";
 This expression copies an address, not a string, to variable
 ex_string . The object to which ex_string points, a character-
 string constant, ends with the NUL character (' \0 ').
 You can declare character-string variables as you would
 declare an array. For example:
 char string_one[] = "thomasina";
 char string_2[10] = "thomasina";
 See Section 5.7.1 for more information concerning declaration
 and initialization of character-string variables.
 To copy one string to another, use the strcpy or the strncpy
 PDP-11 C Run-Time Library (RTL) functions, as follows:
 #include <stdio.h>
 #include <string.h>
 int main(void)
 {
 char ex_string[26];
 /* Copy string into array */
 strcpy(ex_string, "Character-string constant");
 printf("%s\n", ex_string);
 .
 .
 .
 }
 For more information concerning the PDP-11 C RTL
 functions for copying strings, refer to the PDP-11 C Run-
 Time Library Reference Manual .
 A character-string constant is a series of characters enclosed
 in quotation marks (" "). Consider the following:
 "This is a string constant *** "

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p95.decw$book (1 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 It has data type of an array of char . The string is initialized
 with the given characters. The compiler terminates the
 string with a NUL character (' \0 '). There is no formal
 limit to the length of a string constant. The actual limit to a
 string constant's length in PDP-11 C is 65,535 characters.
 This limit is subject to further PDP-11 hardware-specific
 constraints at the time the object file is created. All strings,
 even when written identically, are distinct objects.
 The apostrophe (') and quotation mark (") are significantly
 different punctuation marks in PDP-11 C. See Section 5.3.2
 for more information.
 The following rules apply to the characters used in
 character-string constants:
 .
 All characters, including the escape sequences, can be
 used in strings.
 .
 A quotation mark within a string must be preceded by a
 backslash (\).
 .
 A backslash followed immediately by a newline is ignored,
 allowing long strings to be continued in the first column
 of the next line.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p95.decw$book (2 of 2)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.9 Structures and Unions (struct, union)
 Structures and unions share the following characteristics:
 .
 Their members can be variables of any type, including
 other structures and unions or arrays. A member can
 also consist of a specified number of bits, called a bit-field.
 .
 The only operators that are valid with structures and
 unions are the simple assignment (=), sizeof , dot (.),
 and arrow (->) operators. In particular, structures and
 unions may not appear as operands of the equality (= =),
 inequality (!=), or cast operator.
 .
 They can be assigned to other structures and unions
 with the assignment operator (=). The two structures or
 unions in the assignment must have the same type.
 .
 They can be passed to and returned by functions. The
 argument must have the same type as the function
 parameter. A structure or union is passed by value, just
 like a scalar variable; that is, the entire structure or union
 is copied into the corresponding parameter.
 The difference between structures and unions lies in the way
 their members are stored.
 .
 The members of a structure all begin at different offsets
 from the base of the structure. The offset of a particular
 member corresponds to the order of its declaration; the
 first member is at offset 0. Each successive member of
 a structure begins at the next nonbit-field byte or word
 boundary depending on the alignment requirement of
 the type of the member. An unnamed bit-field of width
 zero causes the next member (generally another bit-field)
 to be aligned on the required boundary. This alignment
 of structure members is a PDP-11 C convention and is
 also followed by all other PDP-11 languages. Other C
 implementations may align members differently.
 .
 In a union, every member begins at offset 0 from the
 address of the union. The size of the union in memory is

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (1 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 the size of its largest member. When the single storage
 space allocated to the union contains a smaller member,
 the extra space between the end of the smaller member
 and the end of the allocated memory remains unaltered.
 You can initialize only the member of a union that
 appears first in the list of union members.

 5.9.1 Declaring a Structure or Union
 Structures and unions are declared with the struct or union
 keywords. You can follow the keywords struct or union by
 a tag, which gives a name to the structure or union type in
 much the same way that an enum tag gives a name to the
 enumerated type. You can then use the tag with the struct
 or union keywords to declare variables of that type without
 specifying individual member declarations again.
 Two structures, two unions, or enumerators cannot have the
 same tag, but the tags can be the same as the identifiers used
 for variables and function names and member names. The
 compiler distinguishes them by context. The scope of a tag is
 the same as the scope of the declaration in which it appears.
 The tag is followed by braces ({ }) that enclose a list of
 member declarations. Each declaration in the list gives
 the data type and name of one or more members. The names
 of structure or union members can be the same as other
 variables, function names, or members in other structures
 or unions. The compiler distinguishes them by context. In
 addition, the scope of the member name is the same as the
 scope of the declaration in which it appears.
 The list of member declarations can be followed by declarators
 which declare structure or union objects.
 Structure or union declarations can take one of five forms, as
 follows:
 1. If a declaration includes only a tag and a list of member
 declarations, then the list of member declarations defines
 the tag to be a data type by which other objects can be
 declared. For example:
 struct person
 {
 char first[20];
 char middle[3];
 char last[30];
 };
 2. When a declaration includes a tag, a list of member

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (2 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 declarations, and a list of identifiers, the identifiers become
 objects of the structure type and the tag is considered to
 be a shorthand notation, or mnemonic, for the structure
 type. Consider the following example:
 struct person
 {
 char first[20];
 char middle[3];
 char last[30];
 } george, mary ;
 3. If the tag is omitted, the structure or union definition
 applies only to the variable identifiers that follow in the
 declaration. Consider the following example:
 struct
 {
 char first[20];
 char middle[3];
 char last[30];
 } george, mary;
 4. The fourth form uses the tag to refer to a structure or
 union defined in another declaration. The definition is
 then applied to the variable identifiers that follow the tag
 name in the declaration.
 struct person george,mary;
 5. The fifth form uses only the struct or union keyword
 and the tag to override other identical tags in scope, and
 to reserve the tag for a later definition within a new
 scope. A definition within a new scope overrides any
 previous tag definition appearing in an outer scope. This
 use of declaring tags is called vacuous structure tag
 declaration. The declaration does not require the size of
 the structure as determined by the structure member
 list. Using such declarations, you can eliminate ambiguity
 when forward referencing tag identifiers. The following
 example illustrates such a case:
 struct ambiguous {...};
 {
 struct ambiguous; /* Vacuous structure tag declaration. */
 /* Ignore previous tag currently in scope. */
 struct inner
 {
 struct ambiguous *pointer; /* Declare a structure pointer by */
 . /* forward referencing. */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (3 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 .
 .
 };
 struct ambiguous /* Complete the definition of "ambiguous" */
 {...}; /* at this scope. */
 }
 In the example, the pointer to the structure defined
 using tag ambiguous points to the second declaration of
 ambiguous , not to the first.
 Structures and unions can contain other structures and
 unions. For example:
 struct person
 {
 char first[20];
 char middle[3];
 char last[30];
 struct
 {
 int day;
 int month;
 int year;
 } birth_date;
 } george, mary;

 5.9.2 Referencing Members of Structures or Unions
 A reference to a member of a structure must be a fully
 qualified or a pointer-qualified reference. For example, the
 fully qualified references to the members last and year from
 the example in the previous section are as follows:
 strcpy(george.last, "Harrison");
 george.birth_date.year = 1944;
 A member name denotes the member's data type and its
 offset from the base of the structure. There are no restrictions
 on the reuse (as a member name) or redeclaration of a
 particular name, except that the same name cannot be used
 for more than one member in the same structure.
 In PDP-11 C, and in other modern C compilers, a structure
 or union reference must be completely qualified; that is, you
 must prefix a member name in a reference either with a
 pointer qualifier (pointer-name ->) or with the name of the
 structure or union and the names of all intervening members.
 For example, consider the following structure declaration:
 int main()

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (4 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 {
 struct
 {
 struct { int a1,a2,a3; } mema;
 struct { int a1,a2,a3; } memb;
 } *pointer, structure;
 pointer = &structure;
 structure.mema.a1 = 1; /* Unambiguous */
 pointer->memb.a1 = 2;
 structure.a1 = 3; /* Ambiguous: which "a1"? */
 pointer->a1 = 4;
 }
 Member a1 must be uniquely qualified as being a member
 of structure mema or structure memb . In fact, structure
 members that are themselves structures must be given
 variable identifiers (mema and memb) to make it possible to
 construct fully qualified references.
 A member name is unique if it conforms to either of the
 following requirements:
 .
 It is used only once.
 .
 If it is used more than once (in different structures),
 every use denotes a member of the same data type and at
 the same offset from the base of its structure.
 If you use member names that refer to different structures
 than those in which they were declared (a programming
 practice not recommended), the compiler issues diagnostic
 messages. The following checks apply to the use of member
 names for references to structures and unions in which they
 are not declared:
 .
 If a member name is unique, you can use it in a reference
 to a structure of which it is not a member, since the
 address and size of the referenced data can be determined
 without ambiguity. However, the compiler issues a
 nonfatal warning message. This usage is maintained for
 compatibility with other C implementations.
 .
 If a member name is not unique (ambiguous), its use in
 such a reference causes a fatal error message.

 5.9.3 Initialization of Structures and Unions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (5 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 In structure and union declarations, initializers follow the
 structure or union variables, not the members. Separate
 initializing values with commas; delimit them with braces
 ({ }). See Section 5.7.1 for more information concerning
 comma-lists.
 An example of the initialization of two structure variables
 follows:
 struct
 {
 int i;
 float c;
 } a = { 1, 3.0e10 }, b = { 2, 1.5e5 };
 The initialization of a union assigns the initializing value to
 the first member in the list of unions. You cannot assign an
 initializer to any other member of the union but the first. In
 the following example, you can only initialize i .
 union
 {
 int i;
 float f;
 } u = { 7 };
 The compiler assigns structure initializers in increasing
 member order. If there are fewer initializers than members,
 the structure is padded with zeros. For more information
 concerning storage classes, refer to Chapter 6.

 Note

 There is no way to specify iterations of an initializer
 or to initialize a member in the middle of a structure
 without also initializing the previous members.

 Example 5-1 shows these initialization rules applied to an
 array of structures.

 Key to Example 5-1:
 1 You must delimit the initialization of each of the array
 rows with braces.
 2 You must delimit a structure initialization with braces.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (6 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 3 You must delimit an array initialization with braces.
 This program writes the following output to stdout :
 row/col ch i c

 [0][0]: a 1 3.000000e+10
 [0][1]: b 2 4.000000e+10
 [0][2]: c 3 5.000000e+10
 [1][0]: 0 0.000000e+00
 [1][1]: 0 0.000000e+00
 [1][2]: 0 0.000000e+00

 5.9.4 Variant Structures and Unions
 Variant structure and union declarations allow you to
 reference members of nested aggregates without having
 to reference intermediate structure or union identifiers.

 Note

 PDP-11 C recognizes and implements variant
 structures and unions for compatibility with
 VAX C, but they are not in the ANSI standard.
 When compiling PDP-11 C programs, the default
 is /NOSTANDARD, which allows the keywords
 variant_struct and variant_union to be recognized.
 If you specify /STANDARD or /STANDARD=ANSI,
 these keywords will not be available.

 When you nest a variant structure or union declaration
 within another structure or union declaration, the enclosed
 variant aggregate ceases to exist as a separate aggregate,
 and PDP-11 C propagates its members to the enclosing
 aggregate.
 You declare variant structures and unions using the
 keywords variant_struct and variant_union . The format
 of these declarations is the same as regular structures or
 unions except for the following:
 .
 Variant aggregates must be nested within other valid
 structure or union declarations.
 .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (7 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 You cannot use a tag in a variant aggregate declaration.
 .
 You must provide a variable identifier in the variant
 aggregate declaration.
 To illustrate the use of variant aggregates, consider
 the following code example, which does not use variant
 aggregates:
 /* The numbers to the right of the code represent the byte offset *
 * from the enclosing structure or union declaration. */
 struct TAG_1
 {
 int a; /* 0-byte enclosing_struct offset */
 char *b; /* 2-byte enclosing_struct offset */
 union TAG_2 /* 4-byte enclosing_struct offset */
 {
 int c; /* 0-byte nested_union offset */
 struct TAG_3 /* 0-byte nested_union offset */
 {
 int d; /* 0-byte nested_struct offset */
 int e; /* 2-byte nested_struct offset */
 } nested_struct;
 } nested_union;
 } enclosing_struct;
 If you want to access nested member d , then you need to
 specify all of the intermediate aggregate identifiers, as follows:
 enclosing_struct.nested_union.nested_struct.d
 If you attempted to access member d without specifying the
 intermediate identifiers, then you would be accessing the
 incorrect offset from the incorrect structure. For instance, if
 you specified the following:
 enclosing_struct.d
 PDP-11 C uses the address of the original structure
 (enclosing_struct), and adds to it the assigned offset value
 for member d (0 bytes), even though PDP-11 C calculated
 the offset value for d according to the nested structure
 (nested_struct). Consequently, PDP-11 C accesses member a
 (0 byte offset from enclosing_struct) instead of member d .
 The following code example illustrates the same code using
 variant aggregates:
 /* The numbers to the right of the code present the byte offset *
 * from enclosing_struct. */
 struct TAG_1
 {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (8 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 int a; /* 0-byte enclosing_struct offset */
 char *b; /* 2-byte enclosing_struct offset */
 variant_union
 {
 int c; /* 4-byte enclosing_struct offset */
 variant_struct
 {
 int d; /* 4-byte enclosing_struct offset */
 int e; /* 6-byte enclosing_struct offset */
 } nested_struct;
 } nested_union;
 } enclosing_struct;
 The members of variant aggregates nested_union and
 nested_struct are propagated to the immediately enclosing
 aggregate (enclosing_struct). The variant aggregates cease to
 exist as individual aggregates.
 Since variant aggregates nested_union and nested_struct
 do not exist as individual aggregates, you cannot use tags
 in their declarations and you cannot use their identifiers
 (nested_union, nested_struct) in any reference to their
 members. However, you are free to use the identifiers in
 other declarations and definitions within your program.
 If you need to access member d , you use the following
 notation:
 enclosing_struct.d
 If you use the following notation, unpredictable results occur:
 enclosing_struct.nested_union.nested_struct.d
 If you use regular structure or union declarations within
 a variant aggregate declaration, PDP-11 C propagates
 the structure or union to the enclosing aggregate, but
 the members remain a part of the nested aggregate. For
 instance, if the nested structure in the last example was of
 type struct , the following offsets would be in effect:
 struct TAG_1
 {
 int a; /* 0-byte enclosing_struct offset */
 char *b; /* 2-byte enclosing_struct offset */
 variant_union
 {
 int c; /* 4-byte enclosing_struct offset */
 struct TAG_2 /* 4-byte enclosing-struct offset */
 {
 int d; /* 0-byte nested_struct offset */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (9 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 int e; /* 2-byte nested_struct offset */
 } nested_struct;
 } nested_union;
 } enclosing_struct;

 5.9.5 Bit-Fields
 A structure member may consist of a specified number of bits,
 called a bit-field, which may be named or unnamed. A colon
 is used to separate the member's declarator (if any) from a
 constant-expression that gives the field width in bits. No field
 may be longer than 16 bits (1 word) in PDP-11 C.
 If no field name precedes the field-width expression, it
 indicates an unnamed field of the specified width. Since
 bit-field structure members are not aligned on byte or
 word boundaries, this form can create unnamed gaps in
 the structure's storage. As a special case, an unnamed field
 of width zero causes the next member (generally another
 bit-field) to be aligned on the next word boundary.
 Bit-fields must be of data types int , unsigned int , unsigned ,
 signed int , or signed . Bit-fields can also have a type that
 is a qualified or unqualified version of int , unsigned int , or
 signed int . The use of other data types is an error. In PDP-
 11 C, bit-fields of type int are unsigned. This is incompatible
 with VAX C, in which bit-fields of type int are signed.
 The following restrictions apply to the use of fields:
 .
 You cannot declare arrays of bit-fields.
 .
 The address-of operator (&) cannot be applied to bit-
 fields, and consequently there cannot be pointers to bit-
 fields.
 .
 You cannot use the sizeof operator on bit-fields
 Constructs of all data types except bit-fields are aligned
 on the next byte or word boundary. Sequences of bit-fields
 are packed as tightly as possible. In PDP-11 C, fields are
 assigned from low bit offset to high bit offset. If necessary, a
 bit-field will cross word boundaries (for example, it will wrap
 to the next word).
 Figure 5-1 illustrates the alignments resulting from the
 following code:
 static struct
 {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (10 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 char c; /* offset 0 */
 short int i; /* offset 2 */
 unsigned fld1 : 3; /* offset 4, bit 0 */
 unsigned fld2 : 4; /* offset 4, bit 3 */
 unsigned : 0;
 unsigned fld3 : 4; /* offset 6, bit 0 */
 } a = { 'A', 1024, 06, 012, 014 } ;

 In Figure 5-1, member a.i is aligned on the second word
 because the int type requires word alignment. Notice that
 fields a.fld1 and a.fld2 are packed as tightly as possible in the
 low-order byte of the third word. The unnamed, zero-length
 field causes a.fld3 to be aligned on the next word boundary.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p96.decw$book (11 of 11)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.10 Aggregates
 The variables used in the examples in Section 2.6 were single
 objects that could be manipulated, in their entirety, in an
 arithmetic expression. These types of variables are called
 scalar variables. The PDP-11 C data structures-arrays,
 structures, and unions-are called aggregates . Aggregates
 are comprised of segments called members , or in the case
 of arrays, they are called elements . Members are sections
 of the structure that you can declare to be of a scalar or an
 aggregate data type.

 5.10.1 Arrays and Character Strings
 An array is an aggregate whose elements are of the same
 type. Elements of an array can be any one of the scalar or
 aggregate data types.
 In PDP-11 C, character strings are represented internally
 as arrays of type char . You may declare and initialize a
 character string using the indirection notation (
 *

), as an
 array of a specified number of members, or as an array of an
 unspecified number of members, as follows:
 char *str = "Hello";
 char string[6] = "Hello";
 char strng[] = "Hello";
 Character strings end with the NUL character (\0). In
 the previous example, the NUL character is appended to
 ``Hello'' making the string 6 characters in length. For more
 information concerning string-handling functions, refer
 to the PDP-11 C Run-Time Library Reference Manual .
 Example 5-2 shows the use of character strings and arrays.

 The output for Example 5-2 follows:
 $ run example8
 Guess which letter I'm thinking of!
 B
 You're wrong.
 You'll have to try again!

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p99.decw$book (1 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 5.10.2 Structures and Unions
 Structures and unions are aggregates whose members can be
 of different types. Structures and unions are declared using
 the keywords struct and union , respectively, an optional tag
 name, and a list of member declarations delimited by braces ({
 }). A member of a structure or a union is a declared segment
 of the data structure. The syntax for declaring a member
 is the same as for declaring any variable. The structure
 or union tag is a name that can be used when declaring
 structure or union variables of the same type elsewhere in
 the program. Members of structures and unions may be
 referenced as follows:
 int main(void)
 {
 struct foo_tag /* optional tag is foo_tag */
 {
 char letter_1;
 char letter_2;
 int number;
 } characters = {'a', 'b', 59}; /* initialize variable */
 characters.letter_1 = characters.letter_2;
 }
 You may reference members using the structure or union
 variable name, directly followed by a period (.), directly
 followed by the member name. As in the previous example,
 structures are initialized using a variable name and
 an assignment operator (=) immediately following the
 declaration of the members. The values of the members
 are delimited by braces and separated by commas (,). The
 address of the first member of a structure begins, in memory,
 at the base of the data structure, which is referred to as
 offset zero . The address of the second begins after the first,
 and so on.
 Unions are declared in the same way as structures, but all
 members in a union begin at offset zero. This means that
 all members of a union share the same memory. Only the
 first member of a union may be initialized. The size of the
 union in memory is as large as its largest member. When the
 single storage space allocated to the union contains a smaller
 member, the extra space between the end of the smaller
 member and the end of the allocated memory remains
 unaltered. Example 5-3 illustrates the nature of unions.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p99.decw$book (2 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 The output for Example 5-3 follows:
 $ run example9.sav
 Lincoln
 Jackson
 M
 Mackson
 The RTL function strcpy copies the second string argument
 into the first array argument. To use the RTL function
 strcpy , you must include the header file string.h as shown
 in Example 5-3. When assigning values to smaller union
 members, the compiler does not fill the remaining space with
 NUL characters (' \0 '); whatever was in memory at the
 time remains. For more information concerning structures
 and unions, refer to Chapter 5.
 Example 5-4 shows a structure definition and its usage.

 Key to Example 5-4:
 1 In the example, the structure declaration with the tag
 storage has four members. The first three members are
 of type char . The last member is of type int .
 2 The variable letter is declared using the tag storage
 and individual members of the structure are initialized.
 The equal sign initializes the members of the structure
 variable with constants. The constants are separated
 by a comma and are delimited by braces. The number
 of initializing constants cannot exceed the number of
 members. However, as in this example, you may omit
 constants; the compiler pads the uninitialized member
 (in the example, member num_guesses) with zeros. You
 cannot initialize a member in the middle of any aggregate
 without initializing the previous members.
 3 Return finishes program execution.
 Sample interaction for Example 5-4 follows:
 $ run example10
 Guess which letter I'm thinking of!
 You've 3 guesses. Make them count!
 B
 You're wrong.
 You'll have to try again!
 C
 You're wrong.
 You'll have to try again!

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p99.decw$book (3 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 U
 You're wrong.
 Sorry, you've run out of guesses!
 After executing these program examples, you are well on
 your way to programming in PDP-11 C.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p99.decw$book (4 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.11 The void Keyword
 The void keyword is a special data type specifier that you
 use in function definitions and declarations for the following
 purposes:
 .
 To specify a function that does not return a value
 .
 To specify a function prototype which declares a function
 with no arguments
 For instance, the following example shows how to use void to
 specify a function that does not return a value:
 void message()
 {
 printf("Stop making sense!");
 return;
 }
 The following example shows how to use void to specify a
 function prototype definition that takes no arguments:
 char function_name(void)
 For more information concerning the void data type and
 function prototypes, refer to Chapter 2.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p103.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.12 The typedef Keyword
 The keyword typedef is used to define an abbreviated name,
 or synonym, for a type definition. In such a declaration, the
 identifiers name types instead of variables. For example:
 typedef char CH, *CP, STRING[10], CF(void);
 In the scope of this declaration, CH is a synonym for
 character, CP for pointer to character, STRING for 10-
 element array of characters, and CF for function returning
 a character. Each of the type definitions can be used in that
 scope to declare variables, as in:
 CF c; /* "c": Function returning a character */
 STRING s; /* "s": 10-character string */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p104.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.13 Interpreting Declarations
 The PDP-11 C programming language syntax for declaring
 objects is unlike the declaration syntax of other languages.
 Because the exact meaning of a complicated PDP-11 C
 declaration is not always immediately apparent, even to an
 experienced C programmer, this section gives guidelines for
 interpreting and constructing PDP-11 C declarations.
 PDP-11 C uses the same set of operators and symbols for
 declarators as for identifiers in an expression. For example,
 the following example declares integer x and pointer px .
 int x;
 int *px;
 Declarator
 *

 px has the same form as that used to yield an
 integer in an expression, such as the following:
 x = *px;
 In the case of simple declarators, this symmetry makes it
 fairly easy to determine the type of an expression or the
 meaning of a declarator. Expression
 *

 px results in the integer
 object to which px points.
 More complicated declarators can be more difficult to
 interpret without some additional guidelines. The important
 one to remember is that the symbols used in declarators are
 PDP-11 C operators, subject to the usual rules of precedence
 and grouping (associative nature). In order of precedence,
 the operators used in declarators are:
 1. The primary-expression operators (()) for `` function
 returning . . . '' and ([]) for ``array of . . . '', where the
 ellipsis indicates the type specified in the declaration.
 These operators group from left to right.
 2. The unary asterisk (
 *

), for indirection or ``pointer
 to . . . '', which groups from right to left.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p105.decw$book (1 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 Consider the following, for example:
 int *x[];
 Even this brief declaration may be confusing. Does it declare
 an array of pointers to integers, or a pointer to an array
 of integers? Since the brackets are of higher precedence, it
 follows that:
 1.
 *

 x[] is an integer.
 2. x[] is a pointer to an integer.
 3. x is an array of pointers to integers.
 Most complicated declarators and expressions can be
 interpreted fairly quickly by such a sequential breakdown.
 Note that the asterisk was removed before the brackets
 because it is of lower precedence.
 Also note that this interpretation process has the desirable
 property of enumerating all the possible usage constructs
 involving a declarator and giving the semantic interpretation.
 When constructing or interpreting declarations or
 expressions, use the following scheme

 1
 for translating
 operators to English and vice versa:
 .
 ``
 *

 '' == ``pointer to''
 .
 ``()'' == ``function returning''
 .
 ``[]'' == ``array of''
 For a more interesting example, consider the following:
 char *x()[];
 The breakdown is:
 1.
 *

 x()[] is char .
 2. x()[] is (pointer to) char .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p105.decw$book (2 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 3. x() is (array of) (pointer to) char .
 4. x is (function returning) (array of) (pointer to) char .
 In step 3, the brackets operator is removed first because
 primary-expression operators have equal precedence and
 group from left to right. That is, ``()[]'' means ``function
 returning array of,'' not ``array of function returning.''
 As a general rule, when breaking down a declaration this
 way, remove the operators with the lowest precedence first.
 Then, if operators are of equal precedence and group from
 left to right, remove the rightmost operator first; if they group
 from right to left, remove the leftmost operator first.
 In the previous example, the declaration shown is
 semantically invalid; PDP-11 C allows functions returning
 addresses of arrays, but not functions returning arrays.
 Perhaps the intention of the programmer was a function
 returning the address of an array of pointers to characters.
 The declaration can be made valid by starting at the bottom
 of a breakdown and working back to a valid declaration:
 1. x is (function returning) (pointer to) (array of) (pointer
 to) char .
 2. x() is (pointer to) (array of) (pointer to) char .
 3.
 *

 x() is (array of) (pointer to) char .
 4. (
 *

 x())[] is (pointer to) char .
 5.
 *

 (
 *

 x())[] is char .
 6. char
 *

 (
 *

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p105.decw$book (3 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

 x())[]; is the final declaration.
 In the final declaration, the first asterisk (since it groups right
 to left) applies to char .
 Parentheses, in addition to the function parameter-list
 operator (()), are used in declarations to change the binding
 of operators. For example, the outer parentheses introduced
 in step 4 prevent the brackets from binding to the inner set of
 parentheses.
 As a last case, consider the following:
 char (* (*x()) []) ();
 This means:
 1. (
 *

 (
 *

 x()) []) () is char .
 2.
 *

 (
 *

 x()) [] is (function returning) char .
 3. (
 *

 x()) [] is (pointer to) (function returning) char .
 4.
 *

 x() is (array of) (pointer to) (function returning) char .
 5. x() is (pointer to) (array of) (pointer to) (function
 returning) char .
 6. The identifier x is a (function returning) a (pointer to) an
 (array of) (pointers to) (functions returning) characters.
 Spaces were used in the example to separate the declarator
 into its component parts. Since spaces, tabs, and newlines
 are ignored by the parser, they should be used in actual
 declarations for clarity.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p105.decw$book (4 of 4)1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6. Scope, Storage Classes, and Allocation
 The PDP-11 C language defines a number of storage-
 class keywords that specify the location of storage and the
 lifetime of the storage allocation. Storage-class qualifiers
 are keywords you can use with the storage-class and data
 type keywords that restrict access to and determine the
 lifetime of variables. The order of the storage-class keyword,
 the storage-class qualifier, the data type qualifier, and the
 data type keyword within the variable declaration does
 not matter. Each declaration, by virtue of its position in the
 program source code, has a default storage class, but you may
 override the default by specifying a storage-class specifier or
 a storage-class qualifier.
 This chapter describes the following:
 .
 Scope of an identifier
 .
 Location of storage
 .
 Lifetime of storage allocation
 .
 Internal storage class
 .
 Static storage class
 .
 Global storage class
 .
 Data type qualifiers
 .
 globalvalue specifier
 .
 Explicit psect control
 .
 Storage-class qualifiers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p107.decw$book1/25/06 3:42 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.1 The Scope of an Identifier
 The scope of an identifier is the portion of the program in
 which the identifier has meaning. An identifier has meaning
 if it is recognized by the compiler, or at the time of task
 building, by the Task Builder on RSX and RSTS/E systems,
 or by the Linker on RT-11 systems. The following sections
 explain the rules to follow for your program identifiers to
 have meaning to both the compiler and the Task Builder or
 Linker, in all desired portions of your program.
 All tags are subject to the same scope rules as other
 identifiers. A member of a structure or union may have the
 same name as a member of another structure or union; the
 scope of the member names can exist concurrently. However,
 when referencing one of the members in a section of the
 program where the scopes of both members are concurrent,
 take care to specify to which structure or union the member
 belongs. For more information concerning the scope of
 structure and union members, refer to Chapter 5.

 6.1.1 The Compilation and Linking Process
 To understand scope, you must understand how PDP-11 C
 uses functions, compilation units, object files, object modules,
 and programs.
 When you write PDP-11 C source programs, you can use
 several methods to compile a program. You can compile
 a single source file, or a group of source files, into a single
 object file . The group of source files compiled to create
 a single object file is called the compilation unit . When
 documentation to other implementations refers to the source
 file, the PDP-11 equivalent is the compilation unit, not
 necessarily a single source file. The single, resultant object file
 has a file extension of OBJ by default.
 The Task Builder or Linker accepts the object file as input
 and then resolves all external references, such as references
 to PDP-11 C Run-Time Library (RTL) functions. Internally,
 segments of object code, such as the object file and the RTL
 object code, are known to the Task Builder or Linker as
 object modules . The object module has the same name
 (without an extension) as the object file, by default. For
 information on how to override the default module name,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p108.decw$book (1 of 5)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 refer to Chapter 7.
 The second way to build programs is to compile several
 compilation units into separate object files. The Task Builder
 or Linker can take more than one object file as input; then,
 the Task Builder or Linker resolves references between these
 individual modules as well as to external references. For
 more information concerning compiling and linking, refer to
 Chapter 1.

 6.1.2 Position of the Declaration
 In determining the scope of a function or variable identifier,
 you must consider the position of a declaration within the
 program. A declaration often determines the size of a storage
 allocation, whereas a definition initiates the allocation of
 storage. Since declarations often are definitions, this section
 refers to definitions and declarations as declarations. You
 may wish to review Chapter 5 before reading the rest of this
 section.
 The location of a declaration establishes the scope of an
 identifier. If a declaration is located inside of a block that
 is delimited by braces ({ }), the compiler recognizes the
 identifier from the point of the declaration to the end of
 the block. If a declaration is located outside of all functions,
 the compiler recognizes the identifier from the point of the
 declaration to the end of the compilation unit.
 You can specify a storage-class specifier or qualifier within
 an identifier's declaration. A storage-class specifier indicates
 a storage class, but a qualifier modifies access to that storage.
 The order of the storage-class specifier, storage-class
 qualifier, and the data type keyword within the declaration
 does not matter. Consider the following example:
 auto int x; /* And, equivalently ... */
 int auto x;
 You can declare identifiers with no storage class; the compiler
 recognizes these identifiers from the point of the declaration
 to the end of the enclosing block or function body. You can
 declare identifiers that are static; if the declaration is outside
 all function bodies, the compiler recognizes these identifiers
 from the point of the declaration to the end of the compilation
 unit.
 You can also declare identifiers that are of the storage class
 global. If the declaration is outside all function bodies, the
 compiler recognizes these identifiers from the point of the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p108.decw$book (2 of 5)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 declaration to the end of the compilation unit. The global
 storage class differs from the static storage class in that the
 Task Builder and Linker can recognize a global variable. The
 global storage class establishes a scope that can span object
 modules.
 Table 6-1 lists the storage classes, the storage-class specifiers
 used to establish scope and the section in this manual that
 discusses each storage class in more detail.

 You can use the data type qualifiers (const and volatile)
 or the storage-class qualifier (readonly and noshare) to
 restrict access to data or to specify storage requirements.

 Note

 The storage-class qualifier readonly and noshare
 are provided for compatibility with VAX C, but offer
 no functionality.

 See Section 6.9 for more information concerning the data type
 qualifiers. See Section 6.10 for more information concerning
 the storage-class qualifiers.

 6.1.3 Lexical Scope and Link-Time Scope
 In using the storage-class specifiers and qualifiers, as well as
 positioning the definitions and declarations of your identifiers,
 keep the following two goals in mind:
 .
 Compile the program so that the compiler recognizes all
 identifiers in the compilation unit, thus avoiding error
 messages.
 .
 Link the program so that the Task Builder or RT-11
 Linker resolves all references to global data definitions,
 thus avoiding error messages.
 You must make a distinction between the following types of
 scope:

 Lexical scope The region of a compilation unit within which

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p108.decw$book (3 of 5)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 an identifier is known to the compiler. When this
 guide uses the term scope, lexical scope is implied.
 Link-time scope The regions of an entire program within which
 a global identifier is known to the Linker. Only
 the identifiers in the global storage class have a
 significant link-time scope.
 Table 6-2 lists the PDP-11 C storage-class specifiers and
 shows both the link-time scope and lexical scope implied by
 each specifier when used inside and outside of functions.

 In Table 6-2, (none) signifies the absence of a storage-class
 specifier from the declaration. The compiler treats a (none)
 inside a function or block as an identifier declared with
 the auto keyword. The compiler treats a (none) outside
 all functions as a global definition, a (none) storage-class
 specifier of the global storage class.

 6.1.4 Program Example
 Example 6-1 illustrates how the placement of variable
 identifiers determines the scope of these identifiers.

 The following list specifies the variable identifiers in the
 previous example, and from which functions they can be
 accessed without compile-time errors:

 Identifier Scope

 EXT_1 This variable is declared outside all functions in
 Compilation Unit 1. This declaration is a reference to
 the definition of the same variable in the Compilation
 Unit 2. In Compilation Unit 1, you can access EXT_1
 in the function f2 (from the point of the declaration
 to the end of the compilation unit). EXT_1 will have
 link-time scope.
 In Compilation Unit 2, the definition of this variable
 is outside all functions; you can access EXT_1 in
 the functions f3, f4, and f5 (from the point of the
 declaration to the end of the compilation unit).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p108.decw$book (4 of 5)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 EXT_2 This variable is defined outside all functions in
 Compilation Unit 1. You can access EXT_1 in the
 functions f1 and f2 (from the point of the declaration to
 the end of the compilation unit).
 In Compilation Unit 2, the declaration of this variable
 is located inside the function f3; you can access EXT_
 1 from the location of this declaration to the end of
 function f3. EXT_2 will have link-time scope.
 STAT There are two variables with the same name but with
 different permanent storage locations. These are two
 different variables. This is because they do not have
 link-time scope.
 In Compilation Unit 1, the variable is defined outside
 all functions. You can access STAT, in Compilation
 Unit 1, in the functions f1 and f2 (from the point of the
 declaration to the end of the compilation unit).
 In Compilation Unit 2, the separate variable is defined
 inside the function f5; you can access STAT from this
 declaration to the end of the function f5.

 Another way to determine scope is to consider the placement
 of the declaration as a matter of privacy. In Compilation
 Unit 2, identifier EXT_2 is made private to function f3 by
 placing the declaration inside the function body. If you want
 to keep a variable private to Compilation Unit 1, declare the
 variable using the storage-class specifier static . Using the
 storage-class specifiers auto and register assures privacy
 to the function, since these specifiers cannot be used outside
 a function body, and storage is deallocated at the end of
 execution of the containing function body. There is no way to
 access a variable declared with auto or register in another
 function or compilation unit.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p108.decw$book (5 of 5)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.2 Storage Allocation
 When you define a variable, the storage class determines its
 location and lifetime. The lifetime of a variable is the length
 of time for which storage is allocated. Storage for a variable
 can be allocated in the following locations:
 .
 On the run-time stack
 .
 In a machine register
 .
 In a program section (psect)
 Variables that are placed on the stack or in a register are
 temporary. For example, the variables of storage class
 auto and register are temporary. Their lifetimes are
 limited to the execution of a single block or function. All
 declarations with no storage class are also definitions; the
 compiler generates code to establish storage at this point in
 the program.
 Program sections, or psects , are used for permanent
 variables; the lifetime of the storage associated with the
 identifiers extends through the course of the entire program.
 A psect represents an area of memory that has a name, a
 size, and a series of attributes that describe the intended or
 permitted usage of that portion of memory. For example,
 the compiler places variables of the static and global storage
 classes in psects; you have some control as to which psects
 contain which identifiers (see Section 6.8).
 Table 6-3 shows the location and lifetime of a variable when
 you use each of the storage-class keywords:

 In Table 6-3, the notation extern signifies identifiers of the
 global storage class. A single definition must exist for each
 identifier having the global storage class; other declarations,
 which use the extern specifier, may exist that refer to that
 definition. This notation is used throughout this chapter.
 See Section 6.5 for more information concerning the global
 storage class.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p112.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.3 Internal Storage Class
 Internal storage class refers to a storage class that permits
 identifiers declared outside a function body to be recognized
 only from the declaration to the end of the immediately
 enclosing block. You can assign the internal storage class
 to identifiers using the auto and register storage-class
 specifiers. The following sections describe these specifiers.

 6.3.1 Defining a Variable for Automatic Storage Allocation
 (auto)
 Use the auto storage-class specifier to define a variable
 whose storage is allocated automatically upon entry into the
 function containing the block in which the variable is declared
 and is automatically deallocated upon exit from the function.
 The code generated by the compiler contains instructions to
 allocate and deallocate the storage by using machine registers
 and the run-time stack. You can have more than one auto
 variable with the same name as long as you declare them in
 separate blocks or functions. You cannot use auto outside a
 function.
 If you explicitly initialize an auto variable, the program code
 initializes the variable to that value each time the declaring
 block is entered normally. This initialization cannot occur
 if control passes into a block by some other means, such
 as a goto statement or if the block is the body of a switch
 statement. For more information concerning the switch and
 goto statements, refer to Chapter 3.
 Within a function, auto is the default storage class. That is,
 any variable (other than a function name) declared within a
 function without a storage-class specifier is given the auto
 storage class. Functions are of the extern storage class by
 default.

 Note

 The compiler can assign auto variables to machine
 registers, if possible. Otherwise, they are placed on the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p114.decw$book (1 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 run-time stack.

 Example 6-2 shows how to reinitialize two auto variables
 with the same name.

 Key to Example 6-2:
 1 This definition of variable x extends through the entire
 function.
 2 This definition of variable x is limited to the for statement
 and supersedes the value of variable x in the surrounding
 function.
 The output for Example 6-2 follows:
 $ run example.exe
 main: 2
 for loop: 3
 main: 2
 In this program, the variable x is defined twice within the
 main function, but the two variables do not conflict. While
 the for loop is executing, the variable x declared inside the
 block supersedes the variable x declared outside the block.

 6.3.2 Defining a Variable for Placement in a Machine
 Register (register)
 Variables declared with the register storage class are similar
 to auto variables. You can use the register internal storage
 class only inside functions, blocks, and function parameter
 declarations.

 Note

 The register storage-class specifier is the only
 specifier that you can use in a parameter declaration.

 A register variable differs from a variable of storage class
 auto in the way that compiler-generated program code
 allocates storage. The register storage-class keyword
 suggests that the compiler flag the variable for placement in a
 machine register. This does not guarantee that the program

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p114.decw$book (2 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 code will place the variable in a register. The compiler
 checks the following conditions to determine whether or not a
 variable is flagged to be placed in a register:
 .
 If the variable is not used, the optimizer may remove it
 entirely.
 .
 If the program contains too many register candidates, not
 all of them are assigned to registers.
 For more information, see the On-Line Release Notes.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p114.decw$book (3 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.4 Static Storage Class
 The static storage class allows you to create permanent
 storage for a variable using the static storage-class specifier
 in the variable declaration. If declared inside of a block, its
 scope begins at the declaration and spans the remainder
 of the block. If declared outside of all functions, its scope
 is limited to the rest of the compilation unit; you can not
 access a variable of the static storage class from another
 compilation unit. If a static identifier with the same name
 is declared in another module, the Task Builder or Linker
 knows nothing of the other variable; the other variable has a
 separate allocation.
 If no initialization is present in the declaration of a variable
 of the static storage class, the Task Builder or RT-11 Linker
 initializes the variable to 0. However, unlike auto variables,
 the compiler-generated program code does not reinitialize
 storage for a static variable every time control reenters a
 function containing the definition of a static variable. For
 example, if you exit a function when a static integer variable
 has the value of 4, the variable retains that value even if
 control reenters the defining function.
 A function can also be defined with the static storage class.
 A static function is not known to the Task Builder or Linker
 and can be referenced only from within its defining module.
 For more information concerning the possible combinations
 of specifiers and qualifiers and the effects of the storage-class
 qualifiers on program section attributes, refer to Chapter 7.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p116.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.5 Global Storage Class
 You can declare identifiers of the global storage class in the
 following manner:
 .
 A definition not using another storage-class keyword,
 located outside all function bodies, declares a global
 variable whose scope extends from the point of the
 definition to the end of the compilation unit.
 .
 A declaration using the extern keyword, usually located
 in another compilation unit, is a reference to the original
 definition. This declaration extends the lexical scope of
 the variable into the second compilation unit. If this
 declaration is inside a block, it extends the lexical scope
 from the point of the declaration to the end of the block.
 If this declaration is outside a block, it extends the lexical
 scope from the point of the declaration to the end of the
 compilation unit.
 .
 The global storage class is the default storage class for
 variables having file scope. You can use more than one
 extern declaration to reference the global definition.
 Use the following rules when deciding whether or not to use
 the extern specifier:
 .
 If the variable is defined before it is referenced, and the
 definition is in the same compilation unit, you do not need
 to declare the variable with the extern specifier.
 .
 If the variable is defined after it is referenced, you need to
 first declare it with the extern specifier.
 .
 If the variable is defined in a separate compilation unit,
 you must always declare it with the extern specifier.
 Consider the following example:
 double D = 2.37;
 int main(void)
 {
 extern int A;
 printf("a:\t%d\n", A);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p117.decw$book (1 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 printf("d:\t%g\n", D);
 }
 int A = 5;
 The main function in this program references two global
 variables, A and D . Since the variable D is defined before it
 is referenced, it does not have to be declared in the main
 function. Since the variable A is referenced before it is
 defined, it must be declared with the extern storage-class
 specifier.
 In many implementations of the C language, you cannot use
 the extern specifier in a declaration that does not refer to
 a global definition elsewhere in the program. Whenever the
 compiler encounters the first declaration of an identifier
 of the global storage class in a PDP-11 C program, it
 creates a global symbol to represent the location of that
 variable. Therefore, in PDP-11 C, you can use the extern
 specifier in a declaration that does not refer to a global
 definition elsewhere in the program. However, this is not
 good programming practice and your programs may not be
 portable to other systems.

 6.5.1 Global Names on PDP-11 Systems
 All global names input to the RSX Task Builder or RT-
 11 Linker must be 6 characters or less and must be of the
 Radix-50 character set. Although the PDP-11 C compiler
 does not place any restrictions on the names of global
 variables in a source program, these names will be translated
 by the compiler. When creating the output files, the PDP-11
 C compiler translates all global symbols to Radix-50 using
 these rules:
 .
 Lowercase characters translate to uppercase characters
 .
 Underscores translate to periods (.)
 .
 Global symbols truncate to 6 characters
 .
 Dollar signs ($) remain the same
 The compiler will issue a warning if more than one global
 name maps to the same Radix-50 translation. The user
 should be aware that different global names in different
 compilation unit may map to the same Radix-50 name
 without warning.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p117.decw$book (2 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 6.5.2 Global Definitions
 The following rules apply when using global definitions in
 PDP-11 C:
 .
 Definitions of a global identifier may occur not more than
 once in a compilation unit, or the compiler will return an
 error.
 .
 The same global variable cannot be defined in two
 modules that will be linked together or the Linker will
 return an error.
 .
 All variables declared with the extern storage-class
 specifier must be defined in a module that will be linked
 in the final program, or the Linker will return an error.

 Note

 The global definition rules listed in this section are
 different than VAX C.

 Linking the following modules would produce two Linker
 errors. The first error would be a multiple definition of the
 global variable A . The second error would be the missing
 declaration of the global variable B . Either program compiled
 alone would not produce any errors.
 x.c y.c
 int A; int A;
 extern int B; extern int B;

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p117.decw$book (3 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.6 Defining Global Definitions (globaldef) and References
 (globalref)
 For compatibility with VAX C, PDP-11 C supports the
 storage-class specifiers globaldef and globalref when
 compiled using the /NOSTANDARD qualifier. PDP-11 C
 implements variables of the global storage class using link-
 time global names and not psects. Therefore, PDP-11 C has
 no need for globaldef and globalref storage-class specifiers.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p118.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.7 Defining Global Values (globalvalue)
 To define a global value, you use the globalvalue specifier.
 A global value is declared outside any functions. You can use
 the globalvalue specifier only with variables of type enum ,
 int , or with pointer variables. All global values have the same
 name restrictions as the variables with the global storage
 class.
 Global values are useful because they allow many
 programmers in the same environment to refer to values
 by identifier, without regard to the actual value associated
 with the identifier. The actual values can change, as dictated
 by general system requirements, without requiring changes
 in all the programs that refer to them. If you make changes
 to the global value, you have to recompile only the defining
 compilation unit (unless it is defined in an object library), not
 all the compilation units in the program that refer to those
 definitions.

 Note

 The globalvalue specifier is provided for compatibil-
 ity with VAX C. Use the /NOSTANDARD switch to
 enable access to this specifier.

 A variable declared with globalvalue does not require
 storage. Instead, the RSX Task Builder or RT-11 Linker
 resolves all references to the value. If an initializer appears
 with globalvalue , the name defines a global symbol for the
 given initial value. If no initializer appears, the globalvalue
 construct is considered a reference to some previously defined
 global value.
 Predefined global values serve many purposes in system
 programming, such as defining status values. It is customary
 in system programming to avoid explicit references to such
 values as those returned by system services, and to instead
 use the global names for those values. Example 6-3 shows

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p119.decw$book (1 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 how to use the globalvalue storage-class specifier.

 In Example 6-3, FAIL is defined in the first module: the
 value is placed into the program stream. In the second
 module, FAIL is declared so that its values may be accessed.
 As it does for global variables, the RSX Task Builder or
 RT-11 Linker recognizes the global symbol as uppercase
 letters. Express global symbols as not more than 6 Radix-50
 characters.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p119.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.8 Explicit psect Control
 A program section (psect) refers to an area of memory that
 has a name, size, and a series of attributes that describe
 the intended or permitted usage of that permanent storage.
 When the compiler allocates storage for objects of static or
 global storage class, storage is allocated into one of two psects:
 static_ro or static_rw. If the object declaration contains the
 const qualifier, storage is allocated in the current static_ro
 psect. If the object declaration does not contain the const
 qualifier, storage is allocated in the current static_rw psect.
 PDP-11 C allows the programmer to control the name and
 attributes of psects. For more information, see Section 7.7.2.
 By modifying the attributes of the static_ro and static_rw
 psects, the user can control the final link-time allocation of
 the objects.
 For example, the following program will allocate the variables
 a and b to psect P2, variable d to psect P3, and variables c
 and e to psect P1.
 #pragma psect static_ro P1
 #pragma psect static_rw P2
 static int a;
 int b;
 static const int c;
 #pragma psect static_rw P3
 static int d;
 static const int e;
 The two sections that follow give two typical examples of how
 to use explicit psect control.

 6.8.1 Reducing Storage Requirements in Overlaid Tasks
 The C language requires that objects of static and global
 storage classes maintain values throughout program
 execution. Therefore, the compiler must allocate permanent,
 unique storage for variables of static and global classes by
 assigning the following default attributes for static_ro and
 static_rw psects: sav, gbl, and con.
 Allocating permanent, unique storage, adversely affects
 overlaid tasks. All storage for static and global variables is
 allocated into the root of the task even for variables declared
 in modules placed in an overlay.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p121.decw$book (1 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 Many user programs require that static variables only
 maintain values while the module in which they are declared
 is active. Thus, the storage could be allocated in the same
 overlay as the module that declares it. This can be done
 using the #pragma psect directive and by specifying the
 following attributes: lcl, rel, and nosav. See Section 7.7.2 for
 more information.

 6.8.2 Data Sharing Using psects
 The most common method for sharing data between two
 modules is by using variables of global storage class. This
 requires that variables be defined exactly once in one
 module and declared using the extern qualifier in all other
 modules. Further, the names of global variables are subject to
 translation by the PDP-11 C compiler.
 An alternate method of sharing data can be accomplished by
 using explicit psect control. If several modules declare the
 static_rw psect with the same name and attributes gbl and
 ovr, they will be declaring the same area of storage.
 Linking the following two modules will assign the same
 storage location to A and C and the same storage location to
 B and D .
 x.c
 #pragma psect static_rw SHARE, gbl, ovr
 static int A;
 static int B;
 y.c
 #pragma psect static_rw SHARE, gbl, ovr
 static int C;
 static int D;

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p121.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.9 Data Type Qualifiers
 Data type qualifiers affect the allocation or access of data
 storage. The data type qualifiers include the const and the
 volatile qualifiers. Each is described in detail in the following
 sections.

 6.9.1 The const Qualifier
 The const data type qualifier restricts access to stored data.
 If you declare an object to be of type const , you cannot
 modify that object.
 The following rules apply to the use of the const data type
 qualifier:
 .
 You can specify const with any of the other data type
 keywords in a declaration.
 .
 If you specify const when declaring an aggregate, all the
 aggregate members are treated as objects of type const .
 .
 You can specify const with volatile or with any of the
 storage-class specifiers or qualifiers.
 .
 The address of a const object can be assigned to a pointer
 to a non- const object, but if you use that pointer to alter
 the value of the object, the result is undefined.
 The following example declares the variable x to be a constant
 integer:
 int const x;
 When declaring pointers, depending upon the placement
 of the const qualifier in the declaration, PDP-11 C either
 interprets the pointer or the object to which it points as
 the constant variable. For instance, the following example
 declares the variable y to be a constant pointer to an integer
 because the const qualifier appears after the asterisk:
 int * const y;
 In the following example, the variable z is declared as a
 pointer to a constant integer because the asterisk appears
 after the const qualifier:
 int const * z;
 If a variable has static or global storage class and is declared

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p122.decw$book (1 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 with the const qualifier, it will be placed in a default read
 only static psect. Using const on automatic variables does
 not affect their storage allocation.

 6.9.2 The volatile Qualifier
 The volatile data type qualifier prevents an object from
 being stored in a machine register, forcing it to be allocated
 in memory. This data type qualifier is useful for declaring
 data that is to be accessed asynchronously. A device driver
 application often uses volatile data storage.
 The following rules apply to the use of the volatile qualifier:
 .
 You can specify volatile with any of the other data type
 keywords in a declaration.
 .
 If you specify volatile when declaring an aggregate, all
 the aggregate members are treated as objects of type
 volatile .
 .
 You can specify volatile with const or with any of the
 storage-class specifiers or qualifiers.
 .
 The address of an object of some other type can be
 assigned to a volatile pointer, but the rules of the volatile
 data type qualifier must be followed if you refer to the
 object using that pointer.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p122.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 6.10 Storage-Class Specifiers
 Storage-class specifiers are provided for compatibility with
 VAX C, but do not have any functionality. The storage-class
 specifiers include noshare , readonly , and _align .
 The PDP-11 C compiler can accept a storage-class specifier
 and a storage-class qualifier in any order; usually, the
 qualifier is placed after the specifier in the source code.
 For example:
 extern noshare int x;
 /* Or, equivalently... */
 int noshare extern x;

 Note

 These storage-class specifiers are provided for
 compatibility with VAX C. Use the /NOSTANDARD
 switch to enable access to these specifiers.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p123.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7. Preprocessor Directives
 Preprocessor directives are lines in the source file that direct
 the compiler to alter its normal processing of PDP-11 C
 source code. PDP-11 C preprocessor directives, except
 #pragma and #module , are defined formally by the ANSI C
 Language Standard. Therefore, ANSI preprocessor directives
 do not vary from one compiler to another.
 If you plan to port programs to and from other C
 implementations, you should take care in choosing which
 preprocessor directives to use within your programs. See
 Section 7.2 for more information concerning conditional
 compilation. For a complete discussion of portability concerns,
 refer to the appendix on compatibility concerns in the PDP-
 11 C Run-Time Library Reference Manual .
 This chapter discusses the following preprocessor operations
 and directives:
 .
 Token replacements (including preprocessor macro
 substitution)-(#define , #undef)
 .
 Controls under which conditional segments of code are
 to be compiled or not-(#if , #ifdef , #ifndef , #else , #elif ,
 #endif , and the defined operator)
 .
 A diagnostic message that includes the specified sequence
 of preprocessing tokens-(#error)
 .
 Include source text from an external file-(#include)
 .
 A new line number and file name specification for
 diagnostics- (#line)
 .
 A Task Builder or RT-11 Linker module-title
 specification- (#module)
 .
 Perform a specific PDP-11 C task, as described later in
 this chapter-(#pragma)
 This chapter also discusses the predefined macros defined by
 the ANSI C Language Standard, as well as macros that are
 provided for compatibility with VAX C macros.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p124.decw$book (1 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 Preprocessor directives are independent of the usual scope
 rules; they remain in effect from their occurrence until the
 end of the compilation unit, or until overridden by another
 preprocessor directive. For more information concerning
 compilation units, refer to Chapter 1.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p124.decw$book (2 of 2)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.1 Token Definitions (#define, #undef)
 The # define directive specifies a token string and an
 identifier with optional arguments. The token string is
 substituted for every subsequent occurrence of that identifier
 in the program text, unless it occurs inside a character
 constant, a comment, or a quoted string. You use the #undef
 directive to cancel a definition for a token.
 The syntax of the # define directive follows:
 #define identifier token-string
 #define identifier(identifier, . . .) token-string
 If you omit the token string, every subsequent occurrence of
 that identifier in the program text is deleted from the text to
 be processed by the compiler.
 After a token string is substituted in the source file, the
 compiler rescans the source line from the beginning of the
 substituted text to determine whether the previously inserted
 text contains identifiers defined by other # define directives.
 If so, the identifiers are replaced by their currently specified
 token strings. Example 7-1 illustrates nested #define
 directives.

 Note

 /DEFINE and /UNDEFINE perform the same
 functions from the command line as #define and
 #undef . For more information, refer to Chapter 1.

 Compile Example 7-1 with the following command:
 $ cc/list/show=intermediate example
 The following listing results:
 1 /* Show multiple substitutions and listing format */
 2
 3 #define AUTHOR james + LAST
 4
 5 int main()
 6 {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (1 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 7 int writer,james,michener,joyce;
 8
 9 #define LAST michener
 10 writer = AUTHOR;
 1 writer = james + LAST ;
 2 writer = james + michener ;
 11 #undef LAST
 12 #define LAST joyce
 13 writer = AUTHOR;
 1 writer = james + LAST ;
 2 writer = james + joyce ;
 14
 }
 1
 On the first pass, the compiler replaces the identifier
 AUTHOR with the token string james + LAST. On the
 second pass, the compiler replaces the identifier LAST with
 its currently defined token string value. At line 9, the token
 string value for LAST is the identifier michener, so michener
 is substituted at line 10. At line 12, the token string value
 for LAST is redefined to be the identifier joyce, so joyce is
 substituted at line 13. The following line is the final text that
 the compiler processes:
 writer = james + joyce;
 Comments within the definition line can be continued without
 the backslash/newline.

 7.1.1 Object-Like Macros
 The first form of the #define directive defines a simple
 substitution, usually of a constant for a mnemonic identifier.
 The identifier can be up to 31 characters. A common use of
 the directive is to define a replacement for an identifier as
 follows:
 # define len (5 + 4)
 total = 5 * len + 45
 The substitution text in the preceding example is delimited
 with parentheses to avoid ambiguities when the text is
 substituted in the program. If the parentheses were omitted,
 then the expression that results from the substitution would
 not be evaluated as expected. For example:
 # define len 5 + 4
 total = 5 * len + 45
 will be substituted with:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (2 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 total = 5 * 5 + 4 + 45
 Thus, since the precedence of the
 *

 operator is higher than
 that of the + operator (refer to Table 4-2), the variable total
 is assigned the value 74 rather than 90.

 7.1.2 Canceling Definitions (#undef)
 The following directive cancels a previous definition of the
 identifier by #define :
 #undef identifier

 7.1.3 Function-Like Macros
 Macros are text substitutions that include a list of parameters.
 A macro substitution looks like a function call. If you call a
 function, control passes from the program to the function
 object code at run time; if you reference a macro, source code
 is inserted into the program at compile time. The parameters
 are replaced by the corresponding arguments and the text
 is inserted into the program stream. The syntax of a macro
 definition follows:
 #define name([parm1[,parm2,...]]) [token-string]
 In the previous syntax definition, name , parm1 , parm2 , and
 so forth are identifiers, and token-string is arbitrary text. No
 space is allowed between name and the left parenthesis.
 After the macro definition, all macro references in the source
 code with the following form are replaced by the token string
 from the directive.
 name([arg1[,arg2,...]])
 Any formal parameters that appear in the token string are
 replaced by the corresponding arguments from the reference.
 For example, argument arg1 replaces parameter parm1 , and
 so forth.
 As shown in the syntax of the macro definition, the token
 string is optional. If the token string is omitted from the
 macro definition, every subsequent occurrence of the macro
 reference (including actual arguments) is deleted from the
 text to be processed by the compiler.
 The token string in the macro definition, as well as actual
 arguments in a macro reference, may contain other macro
 references. If a macro definition either directly or transitively
 references itself, the recursive reference is not substituted.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (3 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 The following is an example of macro substitution:
 #define COMPLAIN(message) \
 (fprintf \
 (stderr, \
 "%s at line %d in file %s", \
 message, \
 __LINE__, \
 __FILE__))
 /* ... */
 if (i > LIMIT)
 COMPLAIN ("Variable i exceeds LIMIT");
 The #define preprocessing statement above defines the
 COMPLAIN macro. The subsequent reference to the
 COMPLAIN macro is replaced with the following:
 if (i > LIMIT)
 (fprintf
 (stderr,
 "%s at line %d in file %s",
 "Variable i exceeds LIMIT",
 __LINE__,
 __FILE__));
 Preprocessor directive and macro reference syntax is
 independent of the PDP-11 C language. The following
 list gives the rules for specifying macro definitions:
 .
 The macro name and the formal parameters are
 identifiers and are specified according to the rules for
 identifiers in the PDP-11 C language.
 .
 Spaces, tabs, and comments may be used freely within
 a # define directive. In particular, they may appear
 anywhere that the delta symbol (¡) appears in the
 following example:
 # ¡ define ¡ name(¡ parm1 ¡ ,<
 MATH_CHAR>(uppercase_delta)parm2 ¡) ¡ \
 ¡ token-string ¡
 .
 White space cannot appear between the name and the
 left parenthesis that introduces the parameter list. White
 space may appear inside the token string and in the
 parameter list. Also, at least one space, tab, or comment
 must separate name from define . Comments may
 appear within the token string, but they do not become

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (4 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 part of the macro definition.
 The following list gives the rules for specifying macro
 references:
 .
 Comments and white space characters (spaces, horizontal
 and vertical tabs, carriage returns, newlines, and form
 feeds) may be used freely within a macro reference. In
 particular, they may appear anywhere that the delta
 symbol (¡) appears in the following example:
 ¡ name ¡ (¡ arg1 ¡ ,
 ¡ arg2 ¡)
 .
 Arguments consist of arbitrary text. Syntactically, they
 are not restricted to PDP-11 C expressions. They may
 contain embedded comments and white space. Comments
 are ignored, but white space is preserved during the
 substitution.
 .
 The number of arguments in the reference must match
 the number of parameters in the macro definition, but
 individual arguments may be null.
 .
 Commas separate arguments except where they occur
 inside string literals or character constants, comments,
 or parentheses. You must balance parentheses within
 arguments.
 You must be careful when specifying macro arguments that
 use the increment (++), decrement (- -), and assignment
 (such as +=) operators or other arguments that may cause
 side effects. Function calls are another source of possible side
 effects. For example, you can define a macro called upcase
 as follows:
 #define upcase(c) ((c) >= 'a' &&(c) <= 'z' ? (c) &0X5F: (c))
 If the argument p++ is given to this macro, the effect within
 the program stream may not be as desired. At run time,
 these expressions may not be evaluated in left-to-right order.
 For this reason, specifying macro arguments that may cause
 side effects is not good programming practice. Even if you
 are aware of possible side effects, the token strings within
 macro definitions may be changed, which changes the side
 effects without warning.

 7.1.3.1 Stringizing Preprocessing Operator (#)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (5 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 Unlike some previous implementations of C, the ANSI
 C Language Standard does not allow the substitution
 of macro arguments within string literals or character
 constants. Instead, the # stringizing preprocessing operator
 (possibly in combination with string literal concatenation;
 see Section 2.15) is used for a similar function. The number
 sign (#) operator may be specified before a parameter in
 the replacement text to enclose the actual argument within
 quotations, as follows:
 #define DISPLAY_SHUTDOWN(min) \
 puts ("System shutting down in " # min "minutes")
 /* ... */
 DISPLAY_SHUTDOWN (5);
 The # min above is replaced with ``5'' during macro
 substitution.
 For example,
 DISPLAY_SHUTDOWN (5)
 is replaced with
 puts ("System shutting down in " "5" "minutes")
 and after string literal concatenation becomes:
 puts ("System shutting down in 5 minutes")

 Note

 The number sign (#) operator can be used only for
 macros with arguments.

 7.1.3.2 Token Concatenation Preprocessing Operator (##)
 The ## token concatenation preprocessing operator can
 be used to concatenate two preprocessing tokens in macro
 replacement text into a single token. This feature is useful in
 forming token spellings based on actual arguments in macro
 substitutions. After actual argument substitution and before
 rescanning for nested macro invocations, the preprocessing
 tokens occurring to the left and right of the ## operator are
 concatenated to form a single token as follows:
 #define INITIALIZE_LIST(list_name) \
 ((list_name ## _head = NULL), (list_name ## _tail = NULL))
 /* ... */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (6 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 INITIALIZE_LIST (students);
 INITIALIZE_LIST (instructors);
 The previous two invocations of the INITIALIZE_LIST
 macro will be expanded as follows:
 (students_head = NULL, students_tail = NULL);
 (instructors_head = NULL, instructors_tail = NULL);

 7.1.4 Listing Substituted Lines
 The /SHOW command line qualifier has two optional values
 that enable the listing of all lines that have been modified
 by macro substitutions. The values are EXPANSION and
 INTERMEDIATE.
 Consider the following qualifiers:
 /LIST/SHOW=EXPANSION
 The listing produced by the compiler with the previous
 qualifiers shows both the original line and the final form
 of the substituted line. Substituted lines are flagged in
 the margin with numbers designating the nesting level of
 substitution.
 Consider the following qualifiers:
 /LIST/SHOW=INTERMEDIATE
 The compiler lists all intermediate substitutions with one
 substitution per line.
 Without one of these two qualifiers or /SHOW=ALL, the
 compiler lists only the original form of an error-free line.
 When a message is cited against a line, the final form of the
 substituted line is always shown.
 Example 7-1 in Section 7.1 shows the effect of the
 /SHOW=INTERMEDIATE qualifier. For more information
 concerning the format of PDP-11 C compiler listings, refer
 to Chapter 1.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p125.decw$book (7 of 7)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.2 Conditional Compilation (#if, #ifdef, #ifndef, #else,
 #elif, #endif)
 Six directives are available to control conditional compilation.
 They delimit blocks of statements that are compiled if a
 certain condition is true. You can nest these directives. The
 beginning of the block of statements is marked by one of
 three directives: #if , #ifdef , or #ifndef . Optionally, an
 alternative block of statements can be set aside with the
 #else or the #elif directives. The end of the block is marked
 by an #endif directive.
 If the condition checked by #if , #ifdef , or #ifndef is true,
 then PDP-11 C ignores all lines between an #else or #elif
 and an #endif directive.
 If the condition is false, then the lines between the #if , #ifdef ,
 or #ifndef and an #else , or #elif or #endif directive are
 ignored. The compiler flags ignored lines with the letter X in
 the compiler listing margin.
 The #if directive has the following form:
 #if constant-expression
 This directive checks whether the constant expression is
 nonzero (true). The operands must be integer constants. The
 increment (++), decrement (- -), sizeof , pointer (
 *

), address
 (&), and cast operators are not allowed in the constant
 expression.
 The constant expression in an #if directive is subject to text
 replacement and can contain references to identifiers defined
 in previous #define directives. The replacement occurs
 before the expression is evaluated.
 If an identifier used in the expression is not currently defined
 and is not an operand of the defined operator, the compiler
 issues an informational message and treats the identifier as
 though it were the constant zero.
 The #ifdef directive has the following form:
 #ifdef identifier
 This directive checks whether the identifier is currently
 defined by a #define directive.
 The #ifndef directive has the following form:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p127.decw$book (1 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 #ifndef identifier
 This directive checks to see if the identifier is not defined or if
 it has been undefined by the #undef directive.
 The #else directive has the following form:
 #else
 This directive delimits alternative source lines to be compiled
 if the condition tested for in the corresponding #if , #ifdef ,
 #ifndef , or #elif directive is false. An #else directive is
 optional.
 The #elif directive has the following form:
 #elif constant-expression
 The #elif line performs a task similar to the combined use
 of the #else and #if statements in PDP-11 C. This directive
 delimits alternative source lines to be compiled if the condition
 in the corresponding #if , #ifdef , #ifndef , or previous #elif
 directive is false and if the additional constant expression
 presented in the #elif directive is true. An #elif directive is
 optional.
 The #endif directive has the following form:
 #endif
 This directive ends the scope of the most recent #if , #ifdef ,
 or #ifndef directives.
 The number of #endif statements must correspond exactly
 to the number of #if , #ifdef , or #ifndef statements. The
 #endif statement must occur in the same source file as the
 corresponding #if , #ifdef , or #ifndef statement. You must
 not specify an #endif statement to correspond with an #elif
 statement.

 7.2.1 The defined Operator
 If you need to check to see if many tokens are defined, you
 may use the preprocessing defined operator in a single use
 of the #if directive. In this way, you can check for token
 definitions in one concise line without having to use many
 #ifdef or #ifndef directives.
 For example, the following three #ifdef ... #endif sequences
 check three tokens:
 # ifdef token1
 printf("Oh, Mary!\n")
 # endif
 # ifndef token2
 printf("Oh, Mary!\n")
 # endif

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p127.decw$book (2 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 # ifdef token3
 printf("Oh, Mary!\n")
 # endif
 You can use the defined operator in a single use of the #if
 preprocessor directive, as follows:
 # if defined (token1) || !defined (token2) || defined (token3)
 printf("Oh, Mary!\n")
 # endif
 You can only use the defined operator in the evaluated
 expression of an #if or #elif preprocessor directive.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p127.decw$book (3 of 3)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.3 The #error Directive
 The #error directive has the following form:
 #error tokens
 This directive produces a diagnostic message that includes the
 specified sequence of preprocessing tokens. For example:
 #if ARRAY_SIZE != 5
 #error "ARRAY_SIZE" is assumed to be 5, but is not
 #endif
 The following message would be displayed:
 %PDP11C-W-LEX_USER_ERROR, User declared error: "ARRAY_SIZE" is assumed
 to be 5, but is not

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p128.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.4 File Inclusion (#include)
 The #include directive inserts external text into the token
 stream delivered to the compiler. Often, global definitions for
 use with PDP-11 C functions and macros are included in
 the program stream with the #include directive. PDP-11 C
 supports nesting of #include files to at least eight levels. In
 a given compilation, PDP-11 C may support higher levels of
 #include file nesting depending on available resources.

 Note

 Unlike VAX C, PDP-11 C does not support text
 modules and text libraries with the #include
 directive.

 7.4.1 Inclusion Using Angle Brackets (<>)
 The first form of the directive follows:
 #include <file-spec>
 This form of file inclusion delimits the file specification with
 angle brackets (<>). It is generally used with header files
 supplied with PDP-11 C.
 The identifier file-spec is a valid file specification or a logical
 name. The compiler first translates the specified file name to
 see if it is a valid file specification. If the specification is not a
 valid file specification, an error occurs.
 For the bracketed form, the order of search follows:
 1. The directories specified in the /INCLUDE_DIRECTORY
 qualifier (if any).
 2. The directory or search list of directories specified in the
 logical name PDP11C$INCLUDE on VMS, RSX-11M-
 PLUS, Micro /RSX, and RSTS/E systems (if any).
 3. The directory specified in the logical name CLB on RSX-
 11M/M-PLUS, Micro /RSX, RSTS/E, and RT-11 systems
 (if any).
 4. The directory or search list of directories specified by
 LB:[1,1] (on VMS and RSX-11M/M-PLUS systems),

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p129.decw$book (1 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 CC$: (on RSTS/E systems), and SY: (on RT-11 systems).
 PDP-11 C uses the first occurrence of the specified file that
 it finds according to the search order for the bracketed form.
 If the specified file cannot be found in any of the previously
 described locations, an error is reported.
 You cannot define PDP11C$INCLUDE to be a rooted
 directory or subdirectory of the following form:
 DBA0:[dir-name.]
 When defining PDP11C$INCLUDE, use complete directory
 specifications.
 For more information concerning search lists, refer to the
 DCL command DEFINE in the VMS DCL Dictionary .
 Table 7-1 lists the logical names for the PDP-11 C host
 environments and their correspondence to VAX C logical
 names (if any).

 7.4.2 Inclusion Using Quotation Marks (" ")
 The second form of the #include preprocessor directive
 follows:
 #include "file-spec"
 This form of file inclusion delimits the file specification with
 quotation marks (" "). It is generally used with user-defined
 header files.
 For the quoted form, the order of search follows:
 1. The directory containing the top-level source file
 2. The directories specified in the /INCLUDE_DIRECTORY
 qualifier (if any)
 3. The directory or search list of directories (if any) specified
 in the logical name C$INCLUDE on VMS, RSX-11M-
 PLUS, and Micro /RSX systems
 4. The current default directory (DK: on RT-11)
 5. If all the previous searches fail, the search order for the
 bracketed form is used as shown in Section 7.4.1.
 PDP-11 C uses the first occurrence of the specified file that
 it finds according to the search order for the quoted form.
 If the specified file cannot be found in any of the previously
 described locations, an error is reported.
 Note that the compiler first searches the directory containing
 the compiled source file for the included file, not the current
 default directory. With PDP-11 C, the source file is the first
 top-level source file, the .C file.
 For example, given the current directory, DBA0:[CURRENT],
 and the following CC command line, the compiler first

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p129.decw$book (2 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 searches DBA0:[OTHERDIR] for any included files delimited
 by quotation marks, even though the current RMS default is
 the directory, DBA0:[CURRENT]:
 $ cc dba0:[otherdir]example.c
 In VMS and RSX-11M-PLUS environments, you have the
 flexibility of defining C$INCLUDE to be any valid directory
 or list of directories you choose before each compilation of
 your program. At the DCL or PDP-11 C command level,
 you may use the /INCLUDE_DIRECTORY qualifier to
 provide an additional search level for include files.
 As with the PDP11C$INCLUDE, do not define C$INCLUDE
 to be a rooted directory or subdirectory. Use complete
 directory specifications when defining C$INCLUDE.
 For more information concerning search lists, refer to the
 DCL command DEFINE in the VMS DCL Dictionary . For a
 correspondence of logical names used by PDP-11 C on each
 host system and by VAX C, refer to Table 7-1.

 Note

 If you include a file from LB:[1,1] by using angle
 brackets and the included file contains a second
 #include line that delimits the file specification with
 quotation marks, the compiler first searches the
 directory containing the top-level source file for the
 specified file, not LB:[1,1].

 7.4.3 Token Substitution in #include Directives
 PDP-11 C allows macro substitution within the #include
 preprocessor directive.
 For instance, if you want to include a file name, you can use
 the following two directives:
 # define token1 "file.ext"
 # include token1
 If you use defined tokens in #include directives, the
 tokens must evaluate to one of the two following acceptable
 #include file specifications, or PDP-11 C generates an error
 message:
 <file-spec>

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p129.decw$book (3 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 "file-spec"

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p129.decw$book (4 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.5 Specification of Line Numbers (#line, #)
 The PDP-11 C compiler keeps track of information about
 relative line numbers in each file involved in the compilation.
 It uses the number when it delivers diagnostic messages to
 the terminal and listing, and when it expands the _ _LINE_ _
 and _ _FILE_ _ macros. The compiler increments the
 line counter for the subsequent lines from the line number
 specified by the #line directive. The directive can also specify
 a new file specification for the program source file. The
 #line directive will not change the line numbers in the left
 margin of your compilation listing, only the line numbers
 given in messages (for example, error messages) and in
 the expansion of the _ _LINE_ _ and _ _FILE_ _ predefine
 macros.
 The formats of the #line directive follow:
 #line constant identifier
 #line constant string
 # constant identifier
 # constant string
 The compiler gives the line following a #line directive the
 number specified by the parameter constant. The second
 parameter can be specified as either a PDP-11 C identifier or
 a string literal. It supplies a valid PDP-11 file specification.
 The character string must not exceed 255 characters.

 Note

 Omission of the #line keyword is provided for
 compatibility with VAX C and is not defined by the
 ANSI standard.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p131.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.6 Specification of Module Name and Identification
 (#module)
 The #module directive is provided as an alternate syntax
 of the #pragma module directive for compatibility with
 VAX C. For more information, refer to Section 7.7.3.

 Note

 The #module directive is provided for compatibility
 with VAX C. To enable access to this directive,
 compile using the /NOSTANDARD switch.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p132.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.7 Implementation-Specific Preprocessor Directive
 (#pragma)
 This section describes the implementation-specific
 preprocessor directives, or pragmas, that are available in the
 PDP-11 C compiler. The #pragma directive is a standard
 method for implementing features that vary from one C
 compiler to the next.
 The following rules apply to the use of PDP-11 C pragmas:
 .
 No pragmas have any effect between different
 compilation units of the same compilation.
 .
 Unless otherwise noted, the use of upper- and lowercase
 alphabetic characters is significant.
 .
 The preprocessing tokens following the #pragma
 keyword, up to the terminating newline, are subject to
 macro replacement unless in single or double quotes.
 .
 Using pragmas that PDP-11 C does not recognize results
 in an informational message.

 7.7.1 #pragma charset
 The charset pragmas specify the source, message, list, and
 execution character sets respectively. The charset pragmas
 that you can specify in PDP-11 C are as follows:
 # pragma charset

 2
 6
 4

 source
 message
 list
 execution

 3
 7

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (1 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 5

 <charset_name>
 The source, message, list, and execution character sets are
 initially set to iso-latin-1. You can change any of these
 character sets from the initial iso-latin-1 default. Once you
 have changed a character set from iso-latin-1, you may
 specify the same new character set any number of times in
 the compilation unit.
 For the message, list, and execution character sets, you
 cannot specify a second character set change for the same
 pragma in the same compilation unit. For example, if you
 change the list character set to french, you can specify
 french any number of times for the list character set in this
 compilation unit, but you cannot specify german for the list
 character set in the same compilation unit. This restriction
 does not apply to the source character set. You can change
 the source character set to a new character set any number
 of times in the same compilation unit.
 The source charset specifies the character set of the source
 file. If you issue the source charset pragma in a source file
 that is cited in the command line (but not in an included
 file), the specified character set becomes the new default and
 current character set.
 Source files that you specify in the command line are
 presumed to be in the default source character set unless
 a source charset pragma is encountered. Files that you
 include with the #include directive are presumed to be in
 the character set of the including file unless a source charset
 pragma is encountered. When the end of an included file
 is reached, the source character set reverts to that of the
 including file.
 PDP-11 C processes source files internally in the iso-latin-1
 character set. Compilation time increases when the source
 character set is other than iso-latin-1.
 The charset message pragma specifies the character set of
 the user terminal, if interactive, or the log file, if batch.
 This pragma should be the first item in the source file.
 Any messages that are displayed before this pragma is
 encountered will be displayed in the iso-latin-1 character set.
 The list charset pragma specifies the character set of the
 device on which the listing file is to be displayed.
 The execution charset pragma specifies the character set

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (2 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 of the environment in which the compiled user program
 will execute. String literals and character set constants
 are translated to the execution character set. You must
 specify this pragma before the first string literal or character
 constant, or an error is signaled.
 Each of the source, message, list, and execution character sets
 may be specified independently of each other. Alternatively,
 all four character sets may be set to the same value in a
 single directive by not specifying a source, message, list, or
 execution keyword in the #pragma charset directive.
 The following is an example of the #pragma charset
 directive. In this example, the french_canadian character
 set is specified for the device on which the listing file is to be
 displayed:
 #pragma charset list french_canadian
 The following example shows how to set the source, message,
 list, and execution character sets to the finnish character set
 in a single directive:
 #pragma charset finnish
 PDP-11 C supports the character sets shown in Table 7-2.

 When using the #pragma charset source directive, use
 trigraphs to represent those characters that are not available
 in the specified source character set. For example:
 #pragma charset source british
 /* Note effect of British source - trigraphs required */
 ??=pragma charset list iso_latin_1
 int printf();
 main ()
 {
 printf("#\n"); /* Script-L will print */
 printf("??=\n); /* '#' will print */
 }
 Another example is:
 #pragma charset source italian
 /* Note effect of Italian source - trigraphs required */
 ??=pragma charset list iso_latin_1
 int printf();
 main ()
 ??<
 printf("??=??/n"); /* '#' will print */
 ??>
 Digital recommends that you do not specify Swiss as a

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (3 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 source character set, because the "_" character has a Swiss
 replacement for which there is no corresponding trigraph.
 However, using the Swiss character set as a message,
 execution, or listing character set poses no problems.

 7.7.2 #pragma psect
 The psect pragmas specify the program sections where
 generated code and data are allocated. The psect pragmas
 that you can specify in PDP-11 C are as follows:
 #pragma psect const [<psect_name>[,<attributes>,...]]
 #pragma psect static_ro [<psect_name>[,<attributes>,...]]
 #pragma psect static_rw [<psect_name>[,<attributes>,...]]
 #pragma psect code_i [<psect_name>[,<attributes>,...]]
 #pragma psect code_d [<psect_name>[,<attributes>,...]]
 The psect_name has the form of any other C identifier;
 however, the compiler will translate this identifier to a 6-
 character, Radix-50 name using the same rules as used
 for global storage variables. For more information on global
 storage variables, see Section 6.5.1.
 The psect name is optionally followed by a list of psect
 attributes. Valid attributes are: ro, rw, i, d, lcl, gbl, rel, abs,
 con, ovr, sav, nosav. These attributes are identical to those
 which follow the MACRO-11 .PSECT directive, except that
 they must be specified in lowercase. For more information,
 see the PDP-11 C Run-Time Library Reference Manual .
 Table 7-3 lists the types of code or data associated with each
 psect type.

 The scope of the psect pragmas ranges from just after the
 psect pragma until the next psect pragma of the same type,
 or the end of the compilation unit, whichever comes first.
 If you specify a psect pragma with no psect name and
 attributes, the default PDP-11 psect of the type you specified
 is assumed.
 When you specify a psect for the first time, the default psect
 attributes are assumed for any unspecified attributes. When
 you subsequently specify a psect, you can specify only the
 same attributes or leave them unspecified. Once you establish
 attributes for a psect, you cannot change them. The attributes
 of the PDP-11 C default psects cannot be changed.
 In addition, note the following:
 .
 The pragma psect const can only be issued once for each

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (4 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 compilation unit.
 .
 The pragma psect code_i and code_d can only be issued
 outside a function body.
 .
 For more information on the pragma psect static_ro and
 pragma static_rw, see Section 6.8.

 7.7.3 #pragma module
 When you compile source files to create an object file, the
 compiler assigns to the object file the last file name (from
 left to right) of those specified in the compilation unit. Files
 separated in the command line with the ``+'' concatenation
 operator form a compilation unit. By default, this same name
 (truncated to 6 characters) is used as the module title that
 is carried internally to the object file and that appears in
 compiler and object-librarian listings and load maps. By
 default, the compiler also gives the module a V1.0 version
 identification.
 For example, the following command line will create an
 object file named MYPROGRAM.OBJ, which is internally
 identified as MYPROG V1.0:
 $ cc myheader.h + myprogram.c
 To change the internal module title and version, use the
 #pragma module directive or the #module directive.
 The syntax of the #pragma module directive follows:
 #[pragma] module

 8
 <
 :

 identifier
 string

 9
 =
 ;

 2
 4

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (5 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 [,] identifier
 [,] string

 3
 5
 The first identifier or string in the #pragma module
 directive refers to the module title and contains up to 6
 Radix-50 characters not including a space. The optional
 second identifier or string refers to the version and is a string
 of up to 6 Radix-50 characters. Radix-50 characters are the
 uppercase letters A through Z, the digits 0 through 9, space
 (``''), period (.), and dollar sign ($). Lowercase letters are
 converted to uppercase.

 Note

 The #module directive (without the pragma
 keyword) is provided for compatibility with VAX C.
 Use of the #module directive (without the pragma
 keyword) causes a warning if /NOSTANDARD=ANSI
 is specified on the command line.

 You may specify this directive only once for each compilation
 unit.

 7.7.4 #pragma list
 The list pragmas enable or disable the listing and control the
 running title and subtitle fields at the head of every page in
 the listing. The list pragmas that you can specify in PDP-11
 C are as follows:
 #pragma list on
 #pragma list off
 #pragma list title "string"
 #pragma list subtitle "string"
 The list on and list off pragmas enable or disable the listing
 respectively. PDP-11 C implements a listing-enabled counter
 similar to that of MACRO-11. Initially, the counter is 0. A
 #pragma list off directive decrements the counter. A
 #pragma list on directive increments the counter. The

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (6 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 listing is enabled whenever the value of the counter is greater
 than or equal to 0; otherwise the listing is disabled.
 You must specify the /LIST qualifier for the list pragmas to
 have an effect. If you do not specify the /LIST qualifier or if
 you specify the /NOLIST qualifier, the list pragmas have no
 effect. The list pragmas also have no effect on the listing of
 machine code if you specify the /SHOW=MACHINE qualifier.
 The list title pragma specifies a title that appears at the top of
 every page of the listing. You may specify this pragma only
 once for each compilation unit. You may specify up to 44
 arbitrary characters.
 The list subtitle pragma specifies a subtitle to appear at the
 top of every page of the listing. You may specify this pragma
 any number of times for each compilation unit. You may
 specify up to 44 arbitrary characters. The use of upper- and
 lowercase for alphabetic characters is significant.

 7.7.5 #pragma linkage
 The linkage pragmas are used to define the exact calling
 mechanism for functions. The pragma defines the function's
 linkage so that later in the compilation unit when the
 function is either defined or referenced, the function will
 be called with the previously defined linkage.
 The syntax for the linkage pragma follows:
 #pragma linkage linkage-specifier [function [,function]...]
 The linkage specifier can be one of six specifiers: c, pascal,
 fortran, rsx_ast, rsx_sst, rsx_csm. The linkage specifier is
 optionally followed by a list of function names.
 If function names follow the linkage specifiers, those functions
 will be given that linkage. If no function names follow the
 linkage specifier, the #pragma sets the default linkage for all
 functions that follow. That is, all functions whose linkage has
 not been explicitly specified using another #pragma linkage
 will take on that linkage. This default linkage remains in
 effect for the rest of the compilation unit or until another
 #pragma linkage occurs without function specifiers. If no
 linkage is specified, the function will be called with the C
 linkage.
 In the following example, funct1 and funct2 are assigned the
 Pascal linkage, funct3 is assigned the FORTRAN linkage,
 and funct4 is assigned the C linkage.
 #pragma linkage fortran /*Assigns fortran linkage
 to any function not

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (7 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 specifically assigned
 a linkage until another
 general linkage is defined.*/
 #pragma linkage pascal funct1,funct2 /*Assigns pascal linkage
 int funct1(); to funct1 and funct2.*/
 int funct2();
 int funct3();
 #pragma linkage c /*Assigns c linkage to
 int funct4(); any function not specifically
 assigned a linkage from
 this point on.*/
 Note that you should not specify a linkage without function
 names in a header file or you may inadvertently redefine
 your calling mechanism for the rest of your compilation unit.
 For more specific information on the effect of the linkages
 pragma, see the chapter on using PDP-11 C with other
 PDP-11 languages in the PDP-11 C Run-Time Library
 Reference Manual .

 7.7.6 #pragma [no]standard
 Use #pragma nostandard to tell PDP-11 C to ignore
 the current setting of the command line qualifier
 /STANDARD=ANSI until further notice. It has no effect
 if the qualifier was not specified.
 The #pragma nostandard directive has the following
 format:
 #pragma [no]standard
 The nostandard and standard pragmas are used together
 to define regions of source code where portability diagnostics
 are never to be issued. The following example demonstrates
 the use of these pragmas:
 #pragma nostandard
 globalvalue int MAXERR = 10;
 #pragma standard
 In this example, nostandard prevents the issuance of a
 diagnostic against the globalvalue storage class qualifier,
 which is not defined by the ANSI C language standard.
 If the compiler detects more occurrences of the nostandard
 pragma than it does the standard pragma, the following
 informational message is issued:
 LEX_MISPRAGMASTAND, Mismatched #pragma standard preprocessor directive (s)
 When this message appears, check that each nostandard
 pragma has a matching standard pragma, both in the main

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (8 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 source file and in any included files.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p133.decw$book (9 of 9)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 7.8 Predefined Macros
 The following sections describe the predefined macros defined
 by the ANSI C Language Standard and the PDP-11 C
 predefined macros that you can use in your programs.

 7.8.1 PDP-11 C Predefined Macros
 The PDP-11 C compiler defines the following preprocessor
 substitutions; these symbols are defined as if the following
 text fragment were included by the compiler before
 every compilation unit. These macros have two leading
 underscores, which conforms to the ANSI C Language
 Standard.
 #define __pdp11 1
 #define __pdp11c 1
 #define __dec_c 1
 #define __vms_host 1 /* Only on VAX/VMS hosts */
 #define __rsx_host 1 /* Only on RSX hosts */
 #define __rsts_host 1 /* Only on RSTS/E hosts */
 #define __rt11_host 1 /* Only on RT-11 hosts */
 #define __PDP11 1
 #define __PDP11C 1
 #define __DEC_C 1
 #define __VMS_HOST 1 /* Only on VAX/VMS hosts */
 #define __RSX_HOST 1 /* Only on RSX hosts */
 #define __RSTS_HOST 1 /* Only on RSTS/E hosts */
 #define __RT11_HOST 1 /* Only on RT-11 hosts */
 You can use these definitions to separate portable and
 nonportable code in any of your PDP-11 C programs.
 The symbols can be used by a PDP-11 C programmer to
 conditionally compile PDP-11 C programs used on more
 than one operating system to take advantage of system-
 specific features. See Section 7.2 for more information
 concerning the use of the preprocessor conditional compilation
 directives.

 7.8.2 Digital Extension Macros
 The CC$gfloat and PDP11 macros are Digital extensions.
 Because these two macro names do not begin with two
 leading underscores, they are not ANSI conformant and
 are not defined when the /STANDARD=ANSI qualifier is

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p136.decw$book (1 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 specified (even after a #pragma nostandard directive). The
 CC$gfloat macro is defined for compatibility with VAX C:
 #define CC$gfloat 0
 Under VAX C, the CC$gfloat macro expands to 1 if
 you specify the /G_FLOAT qualifier; otherwise, the
 CC$gfloat macro is 0. The CC$gfloat macro enables VAX C
 programmers to conditionally compile sections of code that
 depend on the representation of double objects. Because PDP-
 11 systems and PDP-11 C do not support the G-float format,
 PDP-11 C defines CC$gfloat as 0, indicating to a VAX C
 program that is ported to PDP-11 C that the G-float format
 is not being used for double objects.
 The PDP11 macro is defined for compatibility with other C
 language processors on PDP-11 systems:
 #define PDP11 1

 7.8.3 The _ _DATE_ _ Macro
 The _ _DATE_ _ macro evaluates to a string specifying the
 date on which the compilation started. The string presents
 the date in the following format:
 Mmm-dd-yyyy
 The first d is a space if dd is less than 10.
 The following is an example of how to use the _ _DATE_ _
 macro:
 printf("%s",__DATE__);

 7.8.4 The _ _TIME_ _ Macro
 The _ _TIME_ _ macro evaluates to a string specifying the
 time when the compilation started. The string presents the
 time in the following format:
 hh:mm:ss
 The following is an example of how to use the _ _TIME_ _
 macro:
 printf("%s", __TIME__);

 7.8.5 The _ _FILE_ _ Macro
 The _ _FILE_ _ macro evaluates to a string specifying the
 file specification of the current source file. The string presents
 file in the following format:
 disk:[directory]filename.extension;n
 The following is an example of how to use the _ _FILE_ _
 macro:
 printf("file %s", __FILE__);

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p136.decw$book (2 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 The expansion of the _ _FILE_ _ macro can be altered with
 the #line directive (see Section 7.5).

 7.8.6 The _ _LINE_ _ Macro
 The _ _LINE_ _ macro evaluates to an integer specifying the
 number of the line in the source file containing the macro
 reference. The number presents the line in the following
 format:
 n
 The following is an example of how to use the _ _LINE_ _
 macro:
 printf("At line %d in file %s", __LINE__, __FILE__);
 The expansion of the _ _LINE_ _ macro can be altered with
 the #line directive (see Section 7.5).

 7.8.7 The _ _STDC_ _ Macro
 The _ _STDC_ _ macro evaluates to the decimal constant 1.
 The following is an example of how to use the _ _STDC_ _
 macro:
 #ifdef __PDP11C
 #define PASTE(a,b) a##b
 #elif __STDC__
 #define PASTE(a,b) a##b
 #else
 #error cannot define the PASTE macro in this environment
 #endif
 The _ _STDC_ _ macro is defined only if /STANDARD=ANSI
 is specified on the command line. The _ _STDC_ _ macro
 can be used to determine at compile time if the compilation
 environment supports the ANSI C Language Standard.

 7.8.8 The _ _RAD50 and _ _RAD50L Macros
 PDP-11 C provides two macros for specification of radix-
 50 constant values. The _ _RAD50 macro takes a one- to
 three-character string literal argument and converts it to a
 short-word radix-50 value. The _ _RAD50L macro takes a
 one- to six-character string literal argument and converts it
 to a long-word radix-50 value. In both cases, the radix-50
 value is shown in the listing represented as an octal constant
 if /LIST is selected and either /SHOW=EXPANSION or
 /SHOW=INTERMEDIATE is selected on the command line.
 The Example 7-2 illustrates using both of these macros.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p136.decw$book (3 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

 Key to Example 7-2:
 1 The _ _RAD50 macro expansion is shown in the listing as
 a short-word octal constant representing the argument
 in radix-50.
 2 The _ _RAD50L macro expansion is shown in the listing
 as a long-word octal constant representing the argument
 in radix-50.
 Note that the _ _RAD50 and _ _RAD50L macros are
 PDP-11 C extensions and may not be portable to other C
 environments.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p136.decw$book (4 of 4)1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8. PDP-11 C Implementation Notes

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p138.decw$book1/25/06 3:43 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.1 Use of Memory Management Functions
 The PDP-11 C Runtime system maintains a list of free
 space which can be allocated by calls to the malloc , calloc ,
 or realloc functions. On programs linked with the RSX
 taskbuilder on RSX or RSTS/E systems, this space is initially
 the space between the end of the program code and the end
 of the task's window 0. On programs linked with the RT-11
 Linker on RT-11 or RSTS/E, the initial free space is obtained
 by doing a .SETTOP #-2 during initialization of the job which
 obtains all of the free space possible for the job.
 When memory is returned by use of the realloc or free
 functions, the returned memory is linked to the head of a
 circularly linked list of free memory.
 When memory is requested, the free list is searched for a
 block of memory large enough to accommodate the request.
 When the first such area is found, that block of free space is
 reduced by the amount of memory requested, the requested
 memory is allocated, and a pointer to it returned.
 If no single block of free space large enough to accommodate
 the request is found after searching the entire free list, a
 consolidation operation takes place. During this consolidation
 operation, any adjacent blocks of free memory are merged
 into a single block. Also the free list is re-ordered from low
 memory to high memory. After the consolidation operation,
 the free list is searched again to see if the request can now be
 accommodated.
 For programs linked with the RT-11 Linker, if the request
 still cannot be accommodated after consolidation of free space,
 the function returns indicating that the request cannot be
 fulfilled.
 For programs linked with the RSX taskbuilder, an attempt
 to extend the task is made, and the space obtained is added
 to the free list. The amount of the task extension will be the
 amount of memory requested, rounded up to the next highest
 256 word increment. If this task extension request fails, the
 maximum available task extension will be performed.
 After extending the task, the free list is again searched for a
 block large enough to accommodate the request. If this fails,
 a second consolidation operation is performed, and the list
 is searched again. Finally, if this fails, the function returns

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p139.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 indicating that the request cannot be fulfilled.
 Programs linked with the RSX taskbuilder can increase the
 size of the initial area of free space at taskbuild time by using
 the EXTTSK taskbuilder option. At installation time the area
 can be increased by the use of the /INC qualifier to the RSX
 MCR INS command or the /EXTENSION qualifier to the
 RSX DCL command INSTALL. At run-time, the area can be
 increased by the use of the /INC qualifier to the RSX MCR
 RUN command or the /EXTENSION qualifier to the RSX
 DCL RUN command.
 By knowing how much your task will grow, you can pre-
 extend the initial allocation of free space using one of the
 above commands and save some or all task extensions from
 being done. Alternately, you could extend the task at run-
 time to its maximum possible size by invoking the malloc
 function with a size of 65535U. Although this returns a value
 of zero, it does extend the task to the maximum size.
 On RSX, in order for a task extension to be done, the task
 must be checkpointable. One way to do this is by linking
 the task using the /CP taskbuilder option. Alternatively, you
 could either use the /CHECKPOINT qualifier to the RSX
 DCL INSTALL or RUN commands, or the /CKP qualifier
 to the RSX MCR INS or RUN command. If the task is not
 checkpointable, only the free space initially available to the
 task will be available.
 The RSTS/E taskbuilder accepts the /CP switch but ignores it.

 8.1.1 Providing Alternative Space for Memory
 Management
 PDP-11 C programs which use memory resident overlays,
 or are linked using the /PR:n switch cannot use memory
 management functions. Programs that mix PDP-11 C
 routines with routines written in other languages that use
 similar methods for memory management, could have
 problems when each language tries to manage memory in
 the same place.
 The above problems can be overcome by providing the PDP-
 11 C RTL with a fixed area of memory to be used. The space
 provided must reside in the root of overlaid programs. The
 size of this space is fixed and cannot be changed at program
 run-time. Tasks that provide memory in this manner do not
 need to be checkpointable, and the /CP switch is not required
 when taskbuilding on RSX systems.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p139.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 To provide this alternative space for memory management,
 declare an array of the desired size. The size of the space
 provided should be a multiple of 4.
 Fill in the global symbol C$MEMU with the starting address
 of the array. The location following C$MEMU should be
 filled in with the starting address of the array, plus the size of
 the array.
 The following example provides an area of 4096 bytes for
 memory management:
 static char memspace[4096];
 const char *C$MEMU[2] =
 {
 memspace,
 memspace+sizeof(memspace)
 };

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p139.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.2 Compilation Performance and Capacity on PDP-11
 Host Systems
 The following sections describe how data caching, as well
 as placement and size of the work file, effect compilation
 performance.

 8.2.1 Data Caching
 On PDP-11 hosts, PDP-11 C uses a disk-based work file
 with one or two levels of data caching. The first level of
 caching, or primary cache, is done in mapped memory
 (within the 32K-word virtual address space of the PDP-11
 C compiler task). The primary cache is part of the PDP-11
 C compiler task image; it is always present in memory when
 PDP-11 C is running and is not present in memory when
 PDP-11 C is not in memory. PDP-11 C uses a primary
 cache on all PDP-11 host systems.
 The second level of caching, or secondary cache, is done in
 unmapped memory (beyond the 32K-word virtual address
 space of the PDP-11 C compiler task). This feature is
 optional and is not available on host systems that do not
 support the I/D space feature. If selected through the
 /MEMORY command line qualifier, PDP-11 C attempts
 to obtain additional, physical memory from the host operating
 system. If available, this additional memory is used as a
 secondary cache. Whenever data overflows the primary
 cache, a region of the secondary cache is mapped and the
 data is stored in the secondary cache. Similarly, when
 data cannot be found in the primary cache, a region of
 the secondary cache is mapped and searched for the desired
 data. While a secondary cache access is somewhat slower
 than a primary cache access, it is significantly faster than a
 disk access.
 The larger the value specified with the /MEMORY qualifier,
 the greater the performance and capacity of PDP-11 C. Only
 when PDP-11 C processes sufficient data that it overflows
 the primary and secondary caches does it begin to use the
 disk file, and even then the caches continue to be used to
 maximize performance. If the secondary cache obtained
 from the host operating system is larger than the disk file
 specified or defaulted with the /WORK_FILE_SIZE qualifier,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p140.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 the disk file is not used at all. Note that while each 4K-word
 region specified with the /MEMORY qualifier is equivalent
 to 15 disk blocks specified with the /WORK_FILE_SIZE
 qualifier, the requested number of secondary cache regions
 may not be available, resulting in a smaller or no secondary
 cache. Also note that the additional memory used by PDP-
 11 C is unavailable to other tasks, applications, and other
 simultaneous invocations of PDP-11 C while the invocation
 of PDP-11 C that obtained the extended memory is running.

 8.2.2 PDP-11 C Work File
 Performance can also be enhanced by placing the PDP-11 C
 work file on a fast, random access device. For instance, on
 RT-11 host systems, performance can be made comparable
 to that obtained through the extended memory feature on
 RSX and RSTS/E systems by using the VM virtual device
 for the PDP-11 C work file. On all PDP-11 host systems,
 PDP-11 C attempts to open the file on device WF:. If this
 fails, PDP-11 C then opens the work file in a host-specific
 location. Assigning a fast, random access device to WF: can
 significantly improve performance.
 Performance of PDP-11 C can be impaired when large
 values are specified with the /WORK_FILE_SIZE qualifier.
 When a large value is specified, PDP-11 C must use
 additional virtual memory to extend its bitmap of used/unused
 disk blocks. Disk blocks are managed in sets of eight. Thus,
 a 1-word bitmap can keep track of 128 blocks. PDP-11 C
 maintains a minimum bitmap of 64 words, which is sufficient
 for up to 8192 blocks. If the value specified with the /WORK_
 FILE_SIZE qualifier is between 8193 and 40960, a block
 buffer is removed from the primary cache and is used to
 extend the bitmap, thereby decreasing the primary cache hit
 rate and negatively impacting performance. Furthermore, if
 the value is specified between 40961 and 65535, two 1-block
 buffers are required to extend the bitmap, further impairing
 performance. Therefore, values greater then 8192 should
 only be specified with very large compilations that require it,
 or when performance is not a consideration. Naturally, the
 number of blocks specified must be available on the work file
 device; these blocks remain unavailable to other tasks and
 applications while PDP-11 C is running.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p140.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.3 PDP-11 C Run-Time Psects
 This section describes the psects used by the PDP-11 Run-
 Time Library. Table 8-1 lists each of the run-time library
 psects and their use.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p141.decw$book1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.4 Overlaying Tasks
 Some PDP-11 C tasks that work when not overlaid may
 fail during program startup when they are overlaid. This
 can happen because of the way task startup information is
 included into the root of the task.
 The PDP-11 C OTS work area which is located in the psect
 $$C includes a vector of initialization functions which may
 be required by standard library functions used in the task.
 Programs which use only some functions do not need to
 include all the overhead of initialization, nor do they need
 space for functions which the task does not use.
 Modules which require startup routines cause the linker to
 pull the initialization function only as far toward the root as
 is necessary to resolve names. In a non-overlaid program,
 all routines are properly included in the root. However, in an
 overlaid program, the initialization may not make it into the
 root. When the program runs, it is likely to fail.
 For example, a task might consist of a root and two segments
 (A and B). If, in this example, malloc is only referenced in
 segment A and printf is only referenced in segment B and
 the root segment requires no initialization for either memory
 management or I/O functions, then the initialization will fail.
 Each segment indicates the initialization it needs, but this will
 not make it into the root initialization psect $$C.
 Therefore, when PDP-11 C code is used in overlaid tasks, you
 must explicitly build a segment into the root that references
 all modules which contribute to the $$C psect.
 To determine which modules are needed, examine the
 task map and look at the contents of the $$C psect (in any
 segment).
 The following program uses a simple overlay structure. The
 root segment calls the branch, which calls assert .
 ROOT.C:
 extern void func1 ();
 int main () {
 func1 ();
 }
 BRANCH.C:
 #include <assert.h>
 void func1 () {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p143.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 int i = 1;
 assert (i == 1);
 }
 TEST.CMD
 test/cp,test/-sp=test/mp
 TEST.ODL
 .root root-libr-tree
 libr: .fctr lb:[1,1]cfpursx/lb
 tree: .fctr *(branch-libr)
 .end
 When this program is taskbuilt and run, it will fail during
 initialization (before main() is called). The following example
 shows fragments of TEST.MAP:
 TEST.MAP:
 TEST.EXE;1 Overlay description:
 Base Top Length
 ---- --- ------
 000000 002673 002674 01468. ROOT
 002674 043175 040302 16578. BRANCH
 *** Root segment: ROOT
 Memory allocation synopsis:
 Section Title Ident File
 ------- ----- ----- ----
 . BLK.:(RW,I,LCL,REL,CON) 001260 000000 00000.
 :
 $$C :(RW,D,GBL,REL,OVR,SAV) 001670 000076 00062.
 001670 000000 00000. VEXTA 06.07 CFPURSX.OLB;9
 001670 000076 00062. C$INIT V01.09 CFPURSX.OLB;9
 :
 *** Segment: BRANCH
 Memory allocation synopsis:
 Section Title Ident File
 ------- ----- ----- ----
 . BLK.:(RW,I,LCL,REL,CON) 002674 000202 00130.
 :
 $$C :(RW,D,GBL,REL,OVR,SAV) 001670 000076 00062.
 001670 000074 00060. C$SIGD V01.03 CFPURSX.OLB;9
 001670 000060 00048. C$EXID V01.04 CFPURSX.OLB;9
 001670 000070 00056. C$SIOD V01.09 CFPURSX.OLB;9
 001670 000066 00054. C$MLLD V01.03 CFPURSX.OLB;9
 :
 As you can see, $$C in BRANCH is made up of contributions
 from modules C$SIGD, C$EXID, C$SIOD, and C$MLLD

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p143.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 which are not mentioned in $$C of ROOT. To fix the problem,
 explicitly include them into the root:
 MODIFIED TEST.ODL:
 .root root-init-libr-tree
 libr: .fctr lb:[1,1]cfpursx/lb
 init: .fctr lb:[1,1]cfpursx/lb:c$exid:c$mlld:c$sigd:c$siod
 tree: .fctr *(branch-libr)
 .end
 When the task is linked in this way, it will work correctly.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p143.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.5 RT-11 User Service Routine (USR) Load Area
 Under RT-11, if the USR is not resident, the PDP-11 C RTL
 will attempt to set the USR to swap at the location of the
 root C$STDI and C$OTSI psects. During program startup,
 the PDP-11 C RTL checks to see if the size of these psects is
 large enough to accommodate USR. If it is, location 46 in the
 job is set to the address of the C$OTSI psect. By doing this,
 USR will not take up any additional address space.
 It is unlikely that a job that uses the PDP-11 C memory
 management routines will have less than 2K words of space
 in the C$STDI and C$OTSI psects. However, if less than
 2K words of space is present and USR is not resident, the
 memory management initialization routine will set USR to
 swap at the high 2K of memory obtained by doing a .SETTOP
 #-2.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p144.decw$book1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.6 Event Flags
 Under RSX, PDP-11 C uses event flag 24 when performing
 Standard Library I/O functions using the RSX native I/O or
 FCS I/O Packages.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p145.decw$book1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.7 Argument Passing Using Linkages
 Linkages are used in PDP-11 C to define the exact internal
 calling mechanism used for function calls. A function may
 be assigned a linkage using the #pragma linkage directive
 as shown in Chapter 7. PDP-11 C supports the following
 linkages:
 .
 PDP-11 C
 .
 PDP-11 FORTRAN-77
 .
 PDP-11 Pascal
 .
 RSX AST
 .
 RSX CSM
 .
 RSX SST
 For more information on the internal calling mechanisms,
 including stack and register usage of the six linkages, refer to
 the PDP-11 C Run-Time Library Reference Manual .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p146.decw$book1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.8 Defining Your Own Locales
 PDP-11 C offers several pre-defined locales such as Danish,
 French, English, and C. In addition to these pre-defined
 locales, PDP-11 C allows users to define locales specific to
 their needs, and include these locales for use with PDP-11 C
 RTL functions such as setlocale and localeconv , as well as
 the character testing and mapping functions.
 The information needed to define a locale is stored in a
 number of tables. The following sections describe the contents
 of these tables. After the tables have been created, they must
 be placed into the appropriate psects where they can be found
 by the setlocale and localeconv functions. The header file,
 <defloc.h>, is provided which defines several macros to assist
 in this. Please note that you are not required to use these
 macros, but they will make defining a locale easier.
 The names of the locale macros in the <defloc.h> header file
 are:
 .
 To define collating locale:
 DEFINE_LC_COLL(locale-name,
 4-char-gbl-nam,
 _order_table,
 _upcase_table,
 _downcase_table)
 .
 To define character-testing locale:
 DEFINE_LC_CTYPE(locale-name,
 4-char-gbl-nam,
 _tab_table)
 .
 To define monetary formatting data locale:
 DEFINE_LC_MONETARY(locale-name,
 4-char-gbl-nam,
 &MFT_TABLE)
 .
 To define non-monetary formatting data locale:
 DEFINE_LC_NUMERIC(locale-name,
 4-char-gbl-nam,
 &MFT_TABLE)
 .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p147.decw$book (1 of 5)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 To define the time formatting data locale:
 DEFINE_LC_TIME(locale-name,
 4-char-gbl-nam,
 &TIM_STR_TABLE)
 The format of the macro parameters found in the <defloc.h>
 header file are:

 locale-name The pointer to the locale name, or string literal of
 the locale name (such as "C").
 This is the string name that is used as an ar-
 gument to the setlocale function to identify the
 locale.
 4-char-gbl-nam A maximum of 4 characters which will serve as
 the global entry points into the appropriate locale
 psects. The macros will append a different two-
 character number onto each global name created
 to form the complete global name entry for each
 item placed into the appropriate PDP-11 C psects.
 table,.. The address of the user-defined locale table.
 An example of a macro is:
 DEFINE_LC_NUMERIC("user locale name",user,&MFT_TABLE)
 This macro will place the address of the locale name and
 table address into the required PDP-11 C psect. It will also
 create global entry-point names to point to the placed items.
 The first names created will be USER00::, and USER01::. The
 global name USER00 will point to the locale name address
 found in the non-monetary formatting time psect used by
 PDP-11 C. The global name USER01 will point to the user's
 table address found within the non-monetary formatting
 time psect used by PDP-11 C . Thus, these symbols give the
 user direct access to the required psect fields used by PDP-11
 C.
 Because global names are created, the four-character names
 must be different for each macro call issued by the user.
 Otherwise, duplicate global symbol names will be created
 causing compilation or link time errors.
 The format of each macro is defined in more detail within
 <defloc.h> header file. You should read the comments placed
 above each locale macro definition before attempting to use
 the macro in your C modules.
 Although locales can have information in five categories,
 your defined locale need not provide information for all five
 categories. For example, if you only want a different collation

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p147.decw$book (2 of 5)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 table, just provide that table; the other tables will remain the
 same.
 Refer to Example 8-1 for some ideas on how to define your
 own locale tables.

 Key to Example 8-1.
 1 Defines three structures for future use.
 2 The character set testing table contains one entry for each
 member of the character set. At the offset in the table
 equal to a particular character's value, an entry is made
 which determines whether that character tests TRUE or
 FALSE for the various character testing functions. This
 table is set when the setlocale category LC_CTYPE or
 LC_ALL is specified.
 The following values are defined by <defloc.h>:

 _U Character is uppercase
 _L Character is lowercase
 _D Character is a digit
 _S Character is whitespace
 _P Character is punctuation
 _C Character is a control character
 _X Character is a hexadecimal digit
 _V Character is a printing character
 These values can be or 'd together. In fact, the <defloc.h>
 header file defines the logical or for several of these:

 _XD _X or _D
 _XU _X or _U
 _XL _X or _L
 _SC _S or _C
 For example, if the character 'a' has the value of 97 and
 it should test TRUE for the isalnum , isalpha , isgraph ,
 islower , isprint , and isxdigit functions, then the 97th
 entry of the table would have the value _XL.
 3 The character set collation table contains one entry for
 each member of the character set. At the offset in the
 table equal to a particular character's value, an entry is
 made which determines the position of that character in
 the collation sequence. This table is set when the setlocale
 category LC_COLLATE or LC_ALL is specified.
 For example, if the character 'a' has the value of 97

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p147.decw$book (3 of 5)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 and you want it to be the first character in the collation
 sequence, the 97th entry of the table would have the value
 1.
 4 The character set mapping tables contain one entry for
 each member of the character set. At the offset in the
 table equal to a particular character's value, an entry is
 made which determines the mapping of that character
 for the various character mapping functions. These
 tables are set when the setlocale category LC_CTYPE or
 LC_ALL is specified. There is an uppercase table and a
 lowercase table.
 For example, if the character 'a' has the value of 97 and
 it should return 97 for the tolower function and 65 for
 the toupper function, the 97th entry of the lowercase
 table would have the value 97, and the 97th entry in the
 uppercase table would have the value 65.
 5 The time table defines the values returned by the
 strftime function. The lc_time_strings contain:
 .
 7-character string constants corresponding to the
 abbreviated names to be used for the seven days of the
 week
 .
 7-character string constants corresponding to the full
 names to be used for the seven days of the week
 .
 12-character string constants corresponding to the
 abbreviated names to be used for the twelve months of
 the year
 .
 12-character string constants corresponding to the
 full names to be used for the twelve months of the
 year
 .
 2-character string constants corresponding to identify
 AM and PM
 .
 24-character string constants corresponding to the
 24 time zones beginning with GMT and proceeding
 west.
 6 The non-monetary formatting data table defines the
 values returned by the localeconv function. The lc_
 nmformat structure is filled in with the desired contents

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p147.decw$book (4 of 5)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 of the lconv structure to be returned by localeconv for
 this locale. This table is set when the setlocale category
 LC_NUMERIC or LC_ALL is specified.
 7 The monetary formatting data table defines the values
 returned by the localeconv function. The lc_mformat
 structure is filled in with the desired contents of the
 lconv structure to be returned by localeconv for this
 locale. This table is set when the setlocale category LC_
 MONETARY or LC_ALL is specified.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p147.decw$book (5 of 5)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 8.9 Excluding printf Format Support Code
 The RTL support code for the printf family of functions
 (printf , fprintf , sprintf , vfprintf , vprintf , vsprintf) is
 sizable. Often, a program does not need all of the formatting
 flexibility provided by these functions.
 This implementation of PDP-11 C allows you to exclude
 the support code for some of the conversion specifiers for
 formatted output from a task. Excluding the support code
 could save up to 3000 bytes of space. (See PDP-11 C Run-
 Time Library Reference Manual for more information about
 conversion specifications for PDP-11 C standard output.
 By default, support for all formats is provided. Support for
 the c, s, and n formats cannot be excluded. Support for the
 d, i, o, p, u, x, X, f, e, E, g, and G formats can be optionally
 excluded.
 To exclude the support routines for a particular format,
 include in one module of the program a globalvalue
 statement which defines the global symbol for that format
 with the value 0. See Section 6.7 for more information on
 globalvalue . Table 8-2 lists the symbols for each format.

 For example, for a program that does not have f, e, E, g or
 G format output, the following two globalvalue statements
 should appear in the program:
 globalvalue $PFLOA = 0;
 globalvalue $PFLOE = 0;
 The following program simply prints a constant literal string.
 It excludes all of the unnecessary support:
 #include <stdio.h>
 globalvalue $PULON = 0;
 globalvalue $PLONG = 0;
 globalvalue $POLON = 0;
 globalvalue $PHLON = 0;
 globalvalue $PFLOA = 0;
 globalvalue $PFLOE = 0;
 main ()
 {
 printf ("hello, world\n");
 }
 If an attempt is made to use an excluded format, no

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p149.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 characters for that value will be printed. If the value specified
 in the globalvalue statement is not 0, the behavior is
 undefined.
 If you link to the supervisor mode PDP-11 C Run-time
 library, support for all formats is always included. The
 support resides in the supervisor mode library.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p149.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 A. PDP-11 C Compiler Messages
 This appendix lists the PDP-11 C compiler diagnostic
 messages.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p151.decw$book1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 A.1 Introduction
 For each message, the appendix gives the mnemonic, the
 message text, an explanation of the message, and suggested
 actions to be taken to avoid the message.
 Some messages substitute information from the program
 in the message text. In this appendix, the portion of the
 text to be substituted is shown as "

 " or

 . If quotes
 appear around the asterisks, quotes appear in the substituted
 message.
 There are four types of compiler messages: informational,
 warning, error, and fatal. Each type affects the compiler in a
 different way as follows:
 .
 Informational-does not affect compiler; compiler still
 produces object, macro, and listing files (if selected).
 .
 Warning-compiler still produces object, macro, and listing
 files; check your code to ensure accuracy.
 .
 Error-compiler continues through current phase and
 produces object and listing files (if selected); no macro or
 object files are produced; if 30 or more error messages are
 issued, the current phase is aborted and a listing file (if
 selected) is generated; the default error limit of 30 can be
 changed with the /ERROR_LIMIT qualifier.
 .
 Fatal-compiler aborts; no object or macro files are
 produced; only if possible, a listing file is produced.
 You can suppress the warning and informational messages
 with the /[NO]WARNINGS qualifier on the PDPCC
 command line. You may want to do this so that the compiler
 broadcasts only the most severe messages to the terminal.
 For more information concerning the /[NO]WARNINGS
 qualifier, refer to Chapter 1.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p152.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 The messages used by the PDP-11 C compiler are in a
 separate file. The compiler searches for the message file in
 the following locations and in following order:
 .
 V AX/VMS:
 1. PDP11C$MESSAGES (logical),
 2. PDP11C$MESSAGE_DIRECTORY:PDP11C$ENGLISH_
 MSG.MSG,
 3. SYS$COMMON:[SYSMSG]PDP11C$ENGLISH_
 MSG.MSG.
 .
 RSX-11M-PLUS:
 1. SY:PDP11C.MSG,
 2. PDP11C$MESSAGES (logical),
 3. PDP11C$MESSAGE_DIRECTORY:PDP11C.MSG,
 4. LB:[1,2]PDP11C.MSG.
 .
 RSX-11M:
 1. SY:PDP11C.MSG,
 2. LB:[1,2]PDP11C.MSG.
 .
 RSTS/E:
 1. SY:PDP11C.MSG,
 2. CC:PDP11C.MSG,
 3. CC$:PDP11C.MSG.
 .
 RT-11/XM:
 1. DK:PDP11C.MSG,
 2. CC:PDP11C.MSG,
 3. SY:PDP11C.MSG.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p152.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 A.2 Compiler Messages

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p153.decw$book1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 ALC_TEMPOVERFLOW, Your program requires more
 temporaries than the compiler can handle
 Fatal: The expressions you used in your program require
 more temporaries than the compiler can handle.
 User Action: Rewrite your program to use less
 complicated expressions.

 CD_CANT_OPEN_TERMINAL, Cannot open console
 I/O device
 Fatal: The console device (for example, terminal or batch
 log file) could not be opened for output.
 User Action: Determine the error with the console
 device.

 CD_UNSUPVERS, Unsupported operating system
 version
 Fatal: PDP-11 C V1.0 supports V AX/VMS V5.0 and
 later.
 User Action: Upgrade your V AX/VMS system to
 V AX/VMS V5.0 or later.

 CLP_AMBIG_QUAL, Ambiguous qualifier or keyword
 name
 Error: Too few characters were used to truncate a
 keyword or qualifier name to make it unique.
 User Action: Reenter the command; specify at least
 enough characters of the keyword or qualifier name to
 make it unique.

 CLP_BAD_DELEM, Missing comma, or plus before file
 name
 Error: You have entered the wrong command line
 syntax.
 User Action: Correct the syntax and reenter.

 CLP_BAD_OPFILE_ATTRIB, File has bad attributes
 Error: The specified command file to open had bad
 attributes.
 User Action: Check the attributes of the file and reenter.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p154.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 CLP_CLFILE_ERROR, Unexpected file close error
 Error: During a file close operation, an error was
 encountered while closing the specified file.
 User Action: Check the characteristic for the specified
 file to see why the file could not be closed and reenter.

 CLP_FINPUT_ERROR, Unexpected file input error
 Error: Input from the specified file could not be obtained.
 User Action: Check the file attribute and protection for
 the specified file and reenter.

 CLP_FINPUT_LINE_LONG, File input line is too long
 Error: The record line length of the input file exceeded
 the maximum number of characters.
 User Action: Shorten the record line length in the input
 file or verify that the file record attributes are correct.

 CLP_INCONSIST, CLP internal inconsistency in
 module; submit SPR
 Error: The Command Line Processor has detected an
 internal inconsistency.
 User Action: Gather as much information as you can
 about the conditions in effect when the error occurred
 and submit a Software Performance Report (SPR).

 CLP_INPUT_ERROR, Unexpected input error
 Error: Input from the terminal could not be obtained.
 User Action: Check the terminal attributes and reenter.

 CLP_INPUT_LINE_LONG, Input line is too long
 Error: The command line length exceeded the maximum
 number of characters.
 User Action: Shorten the line length.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p154.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 CLP_INV_FILENAME, Invalid file name
 Error: The file name string for a file specification
 contains illegal characters or is too long.
 User Action: Check for a programming error. Verify
 that the file name string is a valid file name.

 CLP_INV_INPUT, Invalid input
 Error: The specified user input was not a valid literal
 string or character string.
 User Action: Check the user input for illegal characters
 and reenter.

 CLP_INV_INTEGER, Invalid integer value
 Error: The specified user input was not a legal integer
 value.
 User Action: Check the specified user integer for
 characters which are not 0 to 9.

 CLP_INV_NOKWD, NO prefix on keyword name not
 allowed
 Error: An attempt was made to negate a qualifier
 keyword that cannot be negated.
 User Action: Remove the negate prefix.

 CLP_INV_NOQUAL, NO prefix on qualifier name not
 allowed
 Error: An attempt was made to negate a qualifier that
 cannot be negated.
 User Action: Remove the negate prefix.

 CLP_INV_NOQUAL_VAL, Value not allowed on NO
 qualifier
 Error: An attempt was made to give value to a negated
 qualifier.
 User Action: Remove the value reference.

 CLP_INV_QUAL, Invalid qualifier name
 Error: The user-specified qualifier name was not
 recognizable.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p155.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Check for invalid string and reenter.

 CLP_INV_QUAL_VAL, Value not allowed for qualifier
 Error: An attempt was made to give a value to a qualifier
 that does not take a value.
 User Action: Remove the value reference.

 CLP_MAX_OPFILE, CLP maximum number of open
 files exceeded
 Error: The maximum number of nested indirect
 command files has been exceeded.
 User Action: Remove the reference to the indirect
 command file that causes the maximum nesting limit to
 be exceeded and reenter.

 CLP_MISS_GRPVAL, Missing keyword, or qualifier
 value when value is required
 Error: A qualifier was specified with group values, and
 no keyword list or value list was supplied.
 User Action: Supply the appropriate value reference.

 CLP_MISS_PAREN, INVALID DELIMITER, Please
 supply ending parenthesis
 Error: A group value list was specified which contains
 an invalid value separator or does not contain an ending
 parenthesis.
 User Action: Correct the group value syntax and
 reenter.

 CLP_MISS_VALUE, Invalid switch keyword or
 qualifier value when value is required
 Error: A qualifier was specified that requires a user
 keyword or value, and no value was supplied.
 User Action: Supply the appropriate value reference.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p155.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 CLP_MODE_INCONSIST, Unexpected CLP file mode;
 submit SPR
 Error: The Command Line Processor has detected an
 internal file mode inconsistency.
 User Action: Gather as much information as you can
 about the conditions in effect when the error occurred
 and submit an SPR.

 CLP_MODQUAL_INCONSIST, Only two string values
 allowed for the module qualifier
 Error: The user specified more than two string values
 for the module qualifier.
 User Action: Supply the appropriate number of values
 and reenter.

 CLP_NO_GRPVAL, Qualifier does not allow group
 values
 Error: A qualifier was specified that does not allow a
 group list of values but contains a group list of values.
 User Action: Supply the appropriate value reference
 type.

 CLP_NO_OPFILE, File not found
 Error: The user-specified file was not found.
 User Action: Specify a file that exists and reenter.

 CLP_NOCL_QUOTE, No closing " on literal
 Error: You did not use matching quotation marks for a
 literal string.
 User Action: Reenter the command using the correct
 quotation syntax.

 CLP_OPFILE_ERROR, Unexpected file open error
 Error: An error was encountered while opening the
 specified file.
 User Action: Check the attributes for the specified file
 and reenter.

 CLP_QUAL_VAL_REQ, Value required for qualifier

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p156.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 Error: A qualifier was specified that requires a user value
 and no value was supplied.
 User Action: Supply the appropriate value reference.

 CLP_UNK_KWD, Unknown keyword name
 Error: The user-specified keyword was not recognizable.
 User Action: Remove the unknown keyword reference
 and reenter.

 CLP_UNK_QUAL, Unknown qualifier name
 Error: The user-specified qualifier was not recognizable.
 User Action: Remove the unknown qualifier reference
 and reenter.

 INCONSISTENCY, Internal inconsistency or stack
 overflow
 Fatal: An internal error or stack overflow has occurred
 within PDP-11 C.
 User Action: Examine your program for complex
 expressions or declarations and simplify as necessary; if
 this does not resolve the problem, submit SPR.

 LEX_BADSTRINGSIZE, The # preprocessing operator
 must be followed by a parameter
 Warning: The # preprocessor operator was encountered
 in a macro definition but was not followed by a parameter.
 User Action: Remove the # operator or specify a
 parameter after the # operator.

 LEX_CLOSE_FAILED, Error closing source file
 Fatal: An unexpected error occurred when closing a
 source file.
 User Action: Determine the cause of the error and
 correct.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p156.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_CMT_UNCLOSED, Unterminated comment
 Warning: The end of file was reached before encounter-
 ing the
 *

 / comment terminating delimiter.
 User Action: Terminate the comment.

 LEX_CONSTTOOLONG, Numeric constant is too long;
 truncated to "
 *

 1
 *

 "
 Warning: Too many digits were encountered in a
 numeric constant.
 User Action: Reduce the number of digits in the
 numeric constant.

 LEX_DEFTOOLONG, Text in a #define preprocessor
 directive is too long; directive ignored
 Warning: The length of the token-string in the #define
 directive exceeded the implementation's limit.
 User Action: Simplify the directive.

 LEX_DUPPARAMETER, Duplicate parameter ignored
 Warning: The identifier for a macro parameter was
 encountered more than once in the formal parameter list.
 User Action: Remove or change the duplicate
 parameter identifier.

 LEX_EXECHARSETDEF, The execution file character
 set cannot be defined twice in a compilation unit;
 directive ignored
 Warning: You cannot specify the #pragma charset
 execution directive more than once in a compilation
 unit.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p157.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Remove the redundant directive.

 LEX_EXECHARSETREF, The execution file character
 set has already been used; directive ignored
 Warning: You have specified a #pragma charset
 execution directive after a string literal or character
 constant has already been processed.
 User Action: Place the directive before any string
 literals or character constants.

 LEX_EXPECTEDEOL, End of line expected
 Warning: Unexpected text was encountered in a
 preprocessing directive.
 User Action: Remove or place the extraneous text in a
 comment.

 LEX_EXTRAMODULE, Redundant #module prepro-
 cessor directive ignored
 Warning: You specified more than one #module
 directive in a single compilation; the excess directive
 or directives were ignored.
 User Action: Make sure that only one #module
 directive exists in the source file, and that it is placed
 before any PDP-11 C source code.

 LEX_EXTRATITLE, Redundant #pragma list title
 preprocessor directive ignored
 Warning: You cannot specify the #pragma list title
 directive more than once in a compilation unit.
 User Action: Remove the redundant directive.

 LEX_FLOAT_E_NODIGITS, Illegal floating point
 constant
 Warning: No digits were specified to the right of the E in
 a floating-point constant.
 User Action: Specify an exponent value to the right of
 the E in the floating-point constant.

 LEX_IFEVALDIVZ, Division by zero while evaluating
 #if or #elif expression; ``true'' expression assumed
 Warning: The specified expression contains a division by
 zero.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p157.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Modify the expression to avoid a division
 by zero.

 LEX_IFEVALSTACK, Stack overflow while evaluating
 #if or #elif expression; ``true'' expression assumed
 Explanation: The specified expression is too complex.
 User Action: Simplify the expression using fewer levels
 of parentheses, and so on.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p157.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_IFSYNTAX, Syntax error in #if or #elif
 expression; ``true'' expression assumed
 Warning: A preprocessor token was encountered in a
 context where it was not expected.
 User Action: Remove or correct the preprocessor token.

 LEX_ILL89_OCT, The digits 8 and 9 are not octal
 digits
 Warning: The digit 8 or 9 was encountered in an octal
 constant.
 User Action: Use only the digits 0 to 7 in the octal
 constant.

 LEX_ILL_BSC, Illegal backslash sequence in string or
 character constant
 Warning: An unrecognized escape sequence was
 encountered in a string literal or character constant.
 User Action: Reference the list of recognized escape
 sequences in Table 5-3 and use only recognized escape
 sequences. Alternatively, use an octal or hexadecimal
 escape sequence.

 LEX_ILLDBLCON, Illegal double constant
 Warning: The specified floating-point value cannot be
 represented as a double precision floating-point constant.
 User Action: Correct the floating-point constant.

 LEX_ILLDECCON, Illegal decimal constant
 Warning: The specified decimal value cannot be
 represented as an integer constant of the specified or
 defaulted type.
 User Action: Specify a different type suffix or correct
 the constant.

 LEX_ILLFLTCON, Illegal float constant
 Warning: The specified floating-point value cannot be
 represented as a single precision floating-point constant.
 User Action: Correct the floating-point constant.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p158.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 LEX_ILL_HEX, Illegal hexadecimal sequence in
 string or character constant
 Warning: A nonhexadecimal digit was encountered
 in a hexadecimal escape sequence in a string literal or
 character constant.
 User Action: Use only hexadecimal digits in a
 hexadecimal escape sequence.

 LEX_ILLHEXCON, Illegal hexadecimal constant
 Warning: The specified hexadecimal value cannot be
 represented in an integer constant of the specified or
 defaulted type.
 User Action: Specify a different type suffix or correct
 the constant.

 LEX_ILLINCLDIR, Illegal device/directory specifica-
 tion with
 /INCLUDE_DIRECTORY qualifier
 Explanation: An illegal directory specification was
 encountered in a /INCLUDE_DIRECTORY qualifier.
 User Action: Specify a legal directory specification with
 the /INCLUDE_DIRECTORY qualifier.

 LEX_ILLNUMCONST, Illegal numeric constant;
 trailing characters ignored
 Warning: Additional characters were encountered at the
 end of a numeric constant.
 User Action: Remove the additional characters or
 separate the numeric constant from the next token with
 a space.

 LEX_ILLOCTCON, Illegal octal constant
 Warning: The specified hexadecimal octal cannot be
 represented in an integer constant of the specified or
 defaulted type.
 User Action: Specify a different type suffix or correct
 the constant.

 LEX_INVALIDIF, Invalid constant or operator in #if
 or #elif expression; ``true'' expression assumed
 Warning: You used an invalid construction in an #if or
 #elif expression, which is assumed to be true.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p158.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Correct the expression.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p158.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_INVDEFNAME, Missing or invalid name in
 #define preprocessor directive; directive ignored
 Warning: The indicated directive was missing a required
 name. For example:
 # define
 The entire directive was ignored.
 User Action: Correct or remove the directive.

 LEX_INVFILESPEC, Missing or invalid file specifica-
 tion in #include preprocessing directive; directive
 ignored
 Error: A #include preprocessor directive was
 encountered with a form other than one of the following:
 #include <FILESPEC>
 #include "filespec"
 #include macro_id
 The specification macro_id is a macro that expands to
 one of the preceding two forms.
 User Action: Specify the #include directive using one of
 the forms shown above.

 LEX_INVHEXCHAR, Invalid hexadecimal character
 value; high-order bits truncated
 Warning: An escape character specified in hexadecimal
 exceeded the limit of a 1-byte character.
 User Action: Correct the hexadecimal constant to
 represent a valid escape character.

 LEX_INVLINEFILE, Invalid file specification in #line
 preprocessor directive; directive ignored
 Warning: The file specification was syntactically invalid,
 and the directive was ignored.
 User Action: Correct the directive.

 LEX_INVLINELINE, Missing or invalid line number in
 #line preprocessor directive; directive ignored
 Warning: The line number was missing or was
 syntactically invalid, and the directive was ignored.
 User Action: Correct the directive.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p159.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 LEX_INVLISTTITLE, Missing or invalid title
 specification in #pragma title/subtitle preprocessor
 directive; directive ignored
 Warning: A preprocessor token other than a string literal
 was encountered in a #pragma list title or #pragma
 list subtitle preprocessor directive.
 User Action: Specify the listing title or subtitle as a
 string literal.

 LEX_INVMODIDENT, Missing or invalid ident
 specification in # [pragma] module preprocessor
 directive; directive ignored
 Warning: The ident specification in the directive either
 was not a valid identifier or was not a valid character-
 string constant.
 User Action: Correct the directive.

 LEX_INVMODTITLE, Missing or invalid title
 specification in # [pragma] module preprocessor
 directive; directive ignored
 Warning: The required title in the directive either was
 missing or was not a valid identifier.
 User Action: Correct the directive.

 LEX_INVOCTALCHAR, Invalid octal character value;
 high-order bits truncated
 Warning: The octal value in an escape sequence was too
 large, as in ' \477 ' . Its high-order bits were truncated.
 User Action: Correct the value.

 LEX_INVPPKEYWORD, Missing or invalid keyword in
 preprocessor directive; directive ignored
 Warning: You wrote a directive with no keyword. For
 example:
 # ABC
 The directive is ignored.
 User Action: Correct or remove the directive.

 LEX_IOBADATTR, Illegal file attributes
 Error: PDP-11 C does not support the attributes of the
 specified file.
 User Action: On VMS and RSX host systems, convert

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p159.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 the file to sequential organization, variable length records,
 carriage return carriage control format, and maximum
 record length no greater than 510. On RSTS/E host
 systems, convert the file to RSTS/E native format, and
 maximum record length no greater than 510.

 LEX_IOEXISTS, File exists
 Error: PDP-11 C has attempted to open a new file that
 should not already exist.
 User Action: Delete or rename the file.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p159.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_IOFNF, Error opening source file - file not
 found
 Error: The specified source file could not be found.
 User Action: Check the spelling of the filespec, the
 assignment of the C$INCLUDE and PDP11C$INCLUDE
 logical names, and the directories specified with the
 /INCLUDE_DIRECTORY qualifier.

 LEX_IOLINETOOLONG, Line too long
 Error: PDP-11 C does not support source file input with
 lines greater than 510 characters.
 User Action: Shorten the line length of lines that exceed
 510 characters; use the ``\'' lexical continuation operator
 if necessary.

 LEX_IONOROOM, No room on device
 Error: PDP-11 C attempted to open a new file on a
 device that had insufficient room available.
 User Action: Delete or purge files on the device to make
 additional room or specify another device.

 LEX_IOUNEXPECTED, Unexpected I/O error
 Error: PDP-11 C encountered an unexpected I/O error
 on the specified file.
 User Action: Determine the cause of the error and
 correct.

 LEX_IOUNEXPEOF, Unexpected end of file
 Error: PDP-11 C encountered the end of an input file in
 a context where this was not expected.
 User Action: Determine the cause of the error and
 correct.

 LEX_LISCHARSETDEF, The listing file character set
 cannot be defined twice in a compilation unit;
 directive ignored
 Warning: You cannot specify the #pragma charset list
 directive more than once in a compilation unit.
 User Action: Remove the redundant directive.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p160.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 LEX_LISCHARSETREF, The listing file character set
 has already been used; directive ignored
 Warning: This message should not occur.
 User Action: Submit an SPR.

 LEX_MACNORPAREN, Missing ')' in macro invocation;
 ')' assumed
 Warning: A functionlike macro invocation was
 encountered without a closing right parenthesis.
 User Action: Complete the macro invocation with a
 closing right parenthesis.

 LEX_MACSYNTAX, Syntax error in macro definition;
 directive ignored
 Warning: The syntax of the parameter list in a macro
 definition was invalid. (You must enclose the parameter
 list in parentheses and delimit individual parameters with
 commas.)
 User Action: Correct the syntax.

 LEX_MACUNEXPEOF, Unexpected end-of-file
 encountered in a macro reference; macro not
 substituted
 Error: The end-of-file was encountered during a macro
 reference; the reference was deleted.
 User Action: Check whether you have misplaced the
 closing parenthesis in the macro argument list.

 LEX_MAXMACNEST, Maximum text replacement
 nesting level exceeded; macro invocation not
 substituted
 Error: You have specified a macro reference that causes
 substitutions to a depth greater than the implementation
 limit of 100.
 User Action: Simplify the macro definitions.

 LEX_MESCHARSETDEF, The message character set
 cannot be defined twice in a compilation unit
 Warning: You cannot specify the #pragma charset
 message directive more than once in a compilation unit.
 User Action: Remove the redundant directive.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p160.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_MESCHARSETREF, The message character set
 has already been used; directive ignored
 Warning: You have specified a #pragma charset
 message directive after a message has already been
 processed (possibly during command line parsing).
 User Action: Correct any command line errors to avoid
 command line messages.

 LEX_MISPARENS, Mismatched parentheses in #if or
 #elif expression; ``true'' expression assumed
 Warning: The expression in a #if or #elif preprocessor
 directive contained unbalanced parentheses.
 User Action: Make sure that you balanced the
 parentheses in the expression.

 LEX_MISSENDIF, Missing #endif preprocessor
 directive(s)
 Error: The compiler did not encounter an #endif line for
 the most recent #if , #ifdef , or #ifndef .
 User Action: Be sure that all directives are properly
 structured, and, if appropriate, add the missing #endif
 preprocessor directives.

 LEX_MODULENOTANSI, The #module directive is
 not in conformance with ANSI C; use #pragma
 module
 Warning: The #module directive is provided for VAX C
 compatibility and is not a portable construct.
 User Action: Use the #pragma module directive for
 identical processing or specify /NOSTANDARD on the
 command line.

 LEX_NAMETOOLONG, Identifier name exceeds 31
 characters; truncated to "

 "
 Warning: PDP-11 C identifiers are limited to a length of
 31 recognized characters.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p161.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Shorten the indicated identifier.

 LEX_NOLINEKWNOTANSI, Omitting the "line"
 keyword from the #line directive is not in
 conformance with ANSI C; use #line
 Warning: The implicit #line directive (# followed by a
 line number) is provided for compatibility with VAX C
 and is not a portable construct.
 User Action: Use the #line directive for identical
 processing or specify /NOSTANDARD on the command
 line.

 LEX_NONTERMCHAR, Nonterminated character
 constant
 Warning: The compiler encountered the end of the
 source line before the end of a character constant. The
 compiler assumed the indicated value.
 User Action: Correct the constant.

 LEX_NOTRAD50, The specified value cannot be
 represented in a RADIX-50 long word; directive
 ignored "

 "
 Warning: The specified value must be composed of 1-to-
 6 alphanumeric characters, the dollar sign (``$''), or the
 period (``.'').
 User Action: Correct the value.

 LEX_NOWIDELIT, A wide character string literal is
 not allowed in this context
 Warning: A wide-character string literal was
 encountered in a context where a normal string literal is
 expected.
 User Action: Remove the L prefix from the string
 literal.

 LEX_NULCHARCON, Character constant contains no
 characters, ' \0 ' assumed
 Warning: The compiler detected a single apostrophe (')
 at the end of the source line.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p161.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Check whether the apostrophe is
 extraneous; otherwise correct the constant.

 LEX_NULHEXCON, Hexadecimal constant contains
 no digits; 0x0 assumed
 Warning: A hexadecimal escape constant was
 encountered that did not include any hexadecimal digits.
 User Action: Correct the hexadecimal constant.

 LEX_PASTEATEND, The ## operator may not occur
 at the end of a macro definition
 Warning: The ANSI C Language Standard stipulates
 that the ## token-paste operator may not occur at the
 end of a macro definition.
 User Action: Remove the ## token-paste operator from
 the end of the macro replacement text.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p161.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_PASTEUPFRONT, The ## operator may not
 occur at the beginning of a macro definition
 Warning: The ANSI C Language Standard stipulates
 that the ## token-paste operator may not occur at the
 beginning of a macro definition.
 User Action: Remove the ## token-paste operator from
 the beginning of the macro replacement text.

 LEX_READ_FAILED, Error reading source file
 Fatal: An unexpected error occurred while reading a
 source input file.
 User Action: Determine the cause of the error and
 correct.

 LEX_REDEFINE, Macro redefinition with different
 replacement text than a previous definition
 Warning: A previously defined macro was redefined
 in a subsequent #define preprocessor directive with a
 different value.
 User Action: Use a different macro identifier or
 undefine the macro with the #undef preprocessor
 directive before redefining.

 LEX_REOPEN_FAILED, Error reopening source file
 Fatal: A source input file that had previously been
 successfully opened, read, and closed, could not be
 reopened by PDP-11 C.
 User Action: Determine cause of the problem and
 correct.

 LEX_REPOVERFLOW, Length of macro expansion
 exceeds maximum buffer capacity; macro
 invocation not substituted
 Error: The length of the replacement text for a macro
 reference or the length of the text plus the rest of the line
 exceeded the implementation's limit.
 User Action: Shorten the replacement text or use
 multiple substitutions to achieve the desired result.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p162.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 LEX_RESERVED, "

 " is a reserved identifier;
 directive ignored
 Warning: You have specified a reserved identifier name
 in a #define or #undef preprocessor directive. Such
 reserved names may not be redefined or undefined. They
 are as follows:
 .
 _ _DATE_ _
 .
 _ _FILE_ _
 .
 defined
 .
 _ _TIME_ _
 .
 _ _LINE_ _
 .
 _ _RAD50
 .
 _ _RAD50L
 .
 _ _STDC_ _
 User Action: Choose a different spelling for the
 identifier.

 LEX_STR_UNCLOSED, Unterminated string literal
 Warning: End-of-line was encountered before the end of
 a string literal.
 User Action: Terminate the string literal with a closing
 quote (") character or continue the string literal using
 lexical continuation.

 LEX_TOOFEWMACARGS, Argument list contains too
 few arguments; missing arguments assumed to be
 null
 Warning: You wrote a reference to the indicated
 macro with fewer arguments than were specified in
 its definition.
 User Action: Make sure that the number of arguments
 in the macro reference is the same as the number of

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p162.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 parameters in the definition.

 LEX_TOOMANYCHAR, Character constant contains
 too many characters; long int constant assumed
 and high-order bits truncated
 Warning: Too many characters were specified in a
 character constant to fit within a long int .
 User Action: Specify no more than 4 characters.

 LEX_TOOMANYCHARINT, Character constant
 contains too many characters for an int constant;
 long int constant assumed
 Informational: Too many characters were specified in
 a character constant to fit within an int .
 User Action: Specify no more than 2 characters.

 LEX_TOOMANYMACARGS, Argument list contains
 too many arguments; excess arguments ignored
 Warning: You wrote a reference to the indicated macro
 with more arguments than were specified in its definition.
 User Action: Make sure that the number of arguments
 in the macro reference is the same as the number of
 parameters in the definition.

 LEX_TOOMANYMACPARM, Parameter list for macro
 contains too many parameters; excess parameters
 ignored
 Warning: The number of macro parameters in
 a #define preprocessor directive exceeded the
 implementation limit of 64.
 User Action: Rewrite the macro definition so that it uses
 64 or fewer parameters.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p162.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 LEX_UNDEFIFMAC, Identifier is not currently a
 macro; constant zero assumed
 Informational: The identifier in a constant expression
 in an #if or #elif preprocessor directive was not currently
 defined as a macro. The expression was evaluated as if
 the identifier were a constant zero.
 User Action: Define the identifier as a macro or remove
 the reference to it.

 LEX_UNEXPELIF, Unexpected #elif preprocessor
 directive encountered; directive ignored
 Warning: The #elif preprocessor directive occurred out
 of place and was ignored.
 User Action: Check the logic of all directives in the
 program to be sure that it is valid.

 LEX_UNEXPELSE, Unexpected #else preprocessor
 directive encountered; directive ignored
 Warning: The #else preprocessor directive occurred out
 of place and was ignored.
 User Action: Check the logic of all directives in the
 program to be sure that it is valid.

 LEX_UNEXPENDIF, Unexpected #endif preprocessor
 directive encountered; directive ignored
 Warning: The #endif preprocessor directive occurred
 out of place and was ignored.
 User Action: Check the logic of all directives in the
 program to be sure that it is valid.

 LEX_UNIMPLEMENTED, This feature is not
 implemented in this configuration of PDP-11 C
 Warning: Refers to a #pragma x where x is not
 supported under PDP-11 C.
 User Action: Remove the line in your code that refers to
 the unsupported #pragma .

 LEX_UNKNOWN_CHAR, Unrecognized character
 Warning: The line contained either an entirely

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p163.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 meaningless character or one that appears out of its
 proper context; for example, a number sign (#) that was
 not the first character on a line.
 User Action: Move or remove the character.

 LEX_UNRECPRAGMA, Unrecognized pragma;
 directive ignored
 Informational: You have specified a #pragma
 preprocessor directive that is not recognized by PDP-11
 C.
 User Action: Correct the syntactic or semantic error
 that rendered the directive unrecognizable. Common
 errors include misspelled parameters and ambiguous
 abbreviations.

 LEX_USER_ERROR, User declared error: "

 "
 Warning: A #error directive was encountered.
 User Action: Determine the conditions that cause the
 #error directive to be processed and correct or remove
 the #error directive.

 LEX_WCHARCONST, PDP-11 C supports minimal
 ANSI conformance for wide character constants;
 subsequent messages for this constant may be
 misleading
 Informational: A wide-character constant was
 encountered. PDP-11 C implements only minimal ANSI
 conformance for wide-character constants. Subsequent
 messages may be misleading.
 User Action: Use a regular character constant.

 LEX_WCHARLITCONCAT, A wide character string
 literal cannot be concatenated with a regular
 string literal
 Warning: A wide-character string literal was
 encountered immediately after a regular string literal,
 or vice versa.
 User Action: Within a string literal concatenation, use
 only wide-character string literals or regular string

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p163.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 literals, but not both.

 MIO_FLOATOVERFLOW, Float overflow; value not
 representable as a float; try double
 Error: The specified value could not be represented as a
 float.
 User Action: Try to place the number into a double.

 MIO_STACKOVERFLOW, Stack overflow during
 machine-independent optimization; simplify
 expression
 Fatal: Machine-independent optimization has detected
 an internal stack overflow while optimizing an expression.
 User Action: Simplify the expression; if the problem
 persists, submit an SPR.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p163.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 MRF_CLOSE, Unable to close the PDP-11 C message
 file
 Error: The compiler cannot close the message file.
 User Action: Submit an SPR.

 MRF_FORMAT, Format error in the PDP-11 C
 message file
 Error: The compiler cannot understand the message file.
 User Action: Ensure that the message file is in its proper
 location. If the file exists, but may have become corrupted
 by a disk failure, etc., then re-installing PDP-11 C should
 fix the problem. If the problem persists, submit an SPR.

 MRF_INTERN, Internal error accessing message file,
 please SPR
 Error: The compiler cannot find the message file.
 User Action: Submit an SPR.

 MRF_OPEN, Unable to open the PDP-11 C message
 file
 Error: The compiler cannot find the message file.
 User Action: Ensure that the message file is in its
 proper location.

 MRF_READ, Cannot read the PDP-11 C message file
 Error: The compiler cannot understand the message file.
 User Action: Submit an SPR.

 MRF_SYNCH, PDP-11 C message file is incompatible
 with compiler image
 Error: The message file is not the same version as the
 compiler.
 User Action: Ensure that the message file is in its
 proper location.

 OGN_FILE_EXISTS, Listing file already exists
 Fatal: The specified output listing file already exists. This
 error will only occur on a VMS or RSX system when
 an explicit version number is specified in the output file

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p164.decw$book (1 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 specification.
 User Action: Remove or change the explicit version
 number in the output file specification or delete the
 existing file.

 OGN_MAC_FILE_EXISTS, Macro file already exists
 Fatal: The specified output macro file already exists.
 This error will only occur on a VMS or RSX system
 when an explicit version number is specified in the output
 file specification.
 User Action: Remove or change the explicit version
 number in the output file specification or delete the
 existing file.

 OGN_MAC_NO_ROOM, No room for macro file on
 device
 Fatal: Occurred because either the user directory was
 full and the output macro file could not be created, or the
 required disk space could not be allocated when writing to
 the file.
 User Action: Delete existing files to provide room for
 new ones.

 OGN_MAC_UNEXPECTED_IO, Unexpected I/O error
 on macro file
 Fatal: An unexpected error occurred during creation of
 the output macro file.
 User Action: Ensure the output file specification is valid,
 and the access exists to the output directory. See system
 manager.

 OGN_NO_MACRO_PRODUCED, No macro file
 produced
 Informational: Any error-level message prevents
 creation of the output macro file.
 User Action: Correct all error-level messages.

 OGN_NO_OBJ_PRODUCED, No object file produced
 Informational: Any error-level message prevents
 creation of the output object file.
 User Action: Correct all error-level messages.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p164.decw$book (2 of 2)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 OGN_NO_ROOM_FOR_FILE, No room for listing file
 on device
 Fatal: Occurred because either the user directory was
 full and the output listing file could not be created, or the
 required disk space could not be allocated when writing to
 the file.
 User Action: Delete existing files to provide room for
 new ones.

 OGN_OBJ_FILE_EXISTS, Object file already exists
 Fatal: The specified output object file already exists. This
 error will only occur on a VMS or RSX system when
 an explicit version number is specified in the output file
 specification.
 User Action: Remove or change the explicit version
 number in the output file specification or delete the
 existing file.

 OGN_OBJ_NO_ROOM, No room for object file on
 device
 Fatal: Occurred because either the user directory was
 full and the output object file could not be created, or the
 required disk space could not be allocated when writing to
 the file.
 User Action: Delete existing files to provide room for
 new ones.

 OGN_OBJ_UNEXPECTED_IO, Unexpected I/O error
 on object file
 Fatal: An unexpected error occurred during creation of
 the output object file.
 User Action: Ensure the output file specification is valid,
 and the access exists to the output directory. See system
 manager.

 OGN_UNEXPECTED_IO, Unexpected I/O error on
 listing file
 Fatal: An unexpected error occurred during creation of
 the output listing file.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p165.decw$book (1 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 User Action: Ensure the output file specification is valid,
 and the access exists to the output directory. See system
 manager.

 OVL_ASYNCH, Asynchronous overlays not supported
 Fatal: The PDP-11 C compiler save image on your
 RT-11 system may be corrupted.
 User Action: Reinstall the CC.SAV compiler save image.

 OVL_BIGROOT, Image root is too large
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_HEADER, Error reading image header
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_LABEL, Error reading save label
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_NOMEM, Insufficient memory
 Fatal: There is not sufficient extended memory (i.e.,
 memory obtained via the virtual .SETTOP programmed
 request) available on your RT-11 system to load the
 PDP-11 C compiler image.
 User Action: PDP-11 C uses 4K words (8K bytes) of
 low-core memory and 28K words (56K bytes) of extended
 memory, or a total of 32K words (64K bytes). Make sure
 that sufficient memory is available to PDP-11 C.

 OVL_READ, Overlay read error
 Fatal: The PDP-11 C compiler save image on your RT-

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p165.decw$book (2 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_ROOT, Error loading image root
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p165.decw$book (3 of 3)1/25/06 3:44 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 OVL_ROOT2, Error loading latter part of image root
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_SPAN, Image overlay cannot span address
 Fatal: The PDP-11 C compiler save image on your
 RT-11 system may be corrupted.
 User Action: Reinstall the CC.SAV compiler save image.

 OVL_SHORT, Short word count loading image root
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_SHORT2, Short word count loading latter part
 of image root
 Fatal: The PDP-11 C compiler save image on your RT-
 11 system may be corrupted or the device may have gone
 off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 OVL_VIRTOV, Virtual overlay error
 Fatal: An error occurred while processing a virtual
 overlay in the RT-11 hosted PDP-11 C compiler. The
 PDP-11 C compiler save image on your RT-11 system
 may be corrupted or the device may have gone off-line.
 User Action: Ensure that the device is on-line or
 reinstall the CC.SAV compiler save image as appropriate.

 SYN_ARGEXTRA, Too many arguments
 Warning: The number of actual arguments is more
 than the number specified in the function's prototype or
 declaration.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p166.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 User Action: Ensure that the number of arguments
 matches the number specified in the function's prototype
 or declaration.

 SYN_ARGINCOMPAT, Argument incompatible for
 assignment
 Warning: The actual argument passed to a function
 has a type incompatibility with the type specified in the
 function's prototype or declaration.
 User Action: Correct the type of the argument, perhaps
 using a cast.

 SYN_ARG_LIST_TOO_LONG, Function reference
 specifies an argument list whose length exceeds
 the PDP-11 architecture limit
 Error: The size of your argument list in the function call
 exceeded 255 arguments.
 User Action: Rewrite the function definition and
 function call using fewer arguments.

 SYN_ARGMISSING, Missing arguments
 Warning: The number of actual arguments is less
 than the number specified in the function's prototype or
 declaration.
 User Action: Ensure that the number of arguments
 matches the arguments specified in the function's
 prototype or declaration.

 SYN_ARGSCALDEF, Can't perform default promo-
 tion on argument number "

 " as it is not a
 scalar
 Error: The default promotion rules (used when a
 function has no prototype in scope) do not allow for
 passing nonscalar (for example, structure or union) types.
 User Action: If the function allows nonscalar
 arguments, ensure that this call is preceded by its
 prototype; otherwise, correct the types of the actual
 arguments.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p166.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 SYN_ASNMLVALREQ, The left operand of an
 assignment operator must be an lvalue
 Error: The left operand of your assignment operator was
 not an lvalue.
 User Action: Rewrite your expression so that you enable
 a location where the operand can be assigned. The rvalue
 (right-hand side) will be loaded into a temporary register
 and then placed into the storage of the lvalue (left-hand
 side).

 SYN_BADPSECT, The program section (psect)
 specified by this statement has conflicting
 'nowrite' attributes with another definition of
 the same program section
 Warning: The psect shown was previously defined as
 read-only, and cannot be re-defined as read-write.
 User Action: Make the psect definitions agree.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p166.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_BITWINTREQ, Both operands of a bitwise
 operator must have integral type
 Error: Both operands of your bitwise operator did not
 have integral type.
 User Action: Change both your operands to have
 integral type.

 SYN_CASECONST, The " case " clause requires a
 constant
 Error: You specified a value in a case label that was not
 a constant.
 User Action: Replace the case value with a valid
 constant expression.

 SYN_CASEDUP, Duplicate " case " clause value
 Error: The same label for a case statement appeared
 twice.
 User Action: Rewrite to eliminate identical case clauses.

 SYN_CASTTYPE, A cast must be either a cast to void
 or a cast between scalar types
 Error: A cast cannot involve casting to a struct, union, or
 other nonscalar type.
 User Action: Change the type of the cast.

 SYN_COND1SCALREQ, The first operand of a " ?: "
 operator must be a scalar
 Error: Your first operand of a ``?:'' operator was not a
 scalar.
 User Action: Change your first operand of a ``?:''
 operator to a scalar.

 SYN_CONFLICTDECL, This declaration of "

 "
 conflicts with a previous declaration of the same
 name
 Warning: Identical declarations conflict with each other.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p167.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 User Action: Change one of the declarations so that they
 are not identical to each other.

 SYN_CONPSECTATTR, This psect has attributes
 conflicting with those previously specified
 Warning: The psect shown has attributes conflicting with
 those previously specified.
 User Action: Make the psect attributes agree.

 SYN_DEFDUP, A " switch " statement may have only
 one " default " clause
 Error: Your switch statement has more than one
 default clause.
 User Action: Rewrite your switch statement to have
 only one default clause.

 SYN_DUPDEFINITION, Duplicate definition of "

 "
 Warning: The named definition appeared more than
 once in the program.
 The two definitions are essentially the same. Both
 definitions specify the same data types and organizations,
 but there may be differences in the values, initializers, or
 array bounds. If the name is a function, there may be a
 difference in the number or types of parameters or in the
 contents of the function body.
 User Action: The purpose of this message is to call a
 possible programming error to your attention.

 SYN_DUPGLOBALNAME , Duplicate global name
 "

 "
 Warning: This declaration of a global object conflicts with
 another global object declared previously. Since PDP-11
 C truncates global names after the first 6 characters and
 converts them to uppercase, you need to ensure that the
 first 6 characters of your global names are unique.
 User Action: Remove duplicate global name references.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p167.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 SYN_DUPLABEL, Duplicate label: "

 "
 Error: You specified duplicates of the indicated label in
 the same function. (Label identifiers must be unique
 within a function definition.)
 User Action: Rewrite the labels (and goto statements
 that refer to them) to eliminate the duplicates.

 SYN_DUPMAINFUNC, Duplicate main function
 Error: You defined two or more main functions in a
 single compilation unit.
 A main function is a function with the name ``main''.
 If the compilation unit contains more than one main
 function, the compiler recognizes only the first as the
 main function.
 User Action: Make sure that there is only one main
 function defined in the compilation unit.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p167.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_DUPMEMBER, Duplicate declaration of member
 "

 "
 Warning: You declared two members with the same
 name in the same structure.
 User Action: Rename one of the members or remove
 one of the member declarations.

 SYN_DUPPARAMETER, Duplicate parameter "

 "
 Warning: The stated function parameter occurred more
 than once in the function's formal parameter list. For
 example:
 funct(a,b,c,a) { }
 All occurrences of the parameter after the first are
 ignored.
 User Action: Remove or change the duplicate
 parameter identifier.

 SYN_ENUMOVERFLOW, Overflow detected in
 evaluating enumerated item "

 "
 Warning: The value of your enumerated item exceeds
 32767.
 User Action: Define your enumerated item value to be
 within the accepted boundaries.

 SYN_EXTRAFORMALS, Extraneous formal parame-
 ter(s) ignored in declaration of "

 "
 Warning: You included a function's formal parameters

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p168.decw$book (1 of 4)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 in a function declaration or definition.
 For example, the following function declaration is not
 allowed because it names the function's parameters:
 int funct(a,b,c);
 The parameters a, b, and c are ignored.
 Similarly, the following example defines a function
 returning a pointer to a function returning an integer.
 The names of the parameters of the function returning
 an integer are not allowed.
 (*f(p1,p2))(q1,q2)
 int p1, p2;
 { . . . }
 The compiler ignores the parameters q1 and q2.
 User Action: Check the syntax of the function
 declaration and, if appropriate, remove the extraneous
 identifiers.

 SYN_FATALSYNTAX , Fatal syntax error
 Fatal: The compiler could not continue due to syntax
 errors.
 User Action: Correct the error in the indicated line, or
 errors, or both reported in previous compiler messages.

 SYN_FUNCNOTDEF, Static function "

 " is not
 defined in this compilation
 Error: You did not define the static function within the
 compilation that references it.
 User Action: Define the static function in the
 compilation that references it.

 SYN_FUNCOBJ, Function return type must be void or
 a completed object type
 Error: A function cannot return an incomplete object
 type.
 User Action: Ensure that the return type is fully
 specified before the function declaration.

 SYN_IFSCALREQ, The controlling expression of an if
 statement must have scalar type

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p168.decw$book (2 of 4)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 Error: Occurs when an if statement has an incorrect
 type (such as struct as the controlling expression.
 User Action: Make sure that the controlling expression
 of an if statement has scalar type.

 SYN_ILLCONDEXPR, The second and third operands
 of the " ?: " operator are of incompatible type
 Error: You specified an invalid combination of operands
 in a conditional expression.
 This can occur if the operands are pointers to objects of
 a different size or type, or if the operands are different
 structures.
 User Action: Make sure that both operands are of
 compatible sizes and data types.

 SYN_ILLFUNCCALL, Functions with RSX AST or
 RSX SST linkage can not be invoked directly
 Error: You invoked a function declared with RSX AST
 or RSX SST linkage. Functions with these linkages can
 not be invoked directly. They may be declared, have
 their address taken, and be passed as arguments to other
 routines. These functions gain control through the AST or
 SST respectively.
 User Action: Do not invoke the function with RSX AST
 or RSX SST linkage.

 SYN_ILLFUNCRET, Functions with RSX AST or RSX
 SST linkage must be of type void
 Error: You declared a function with RSX AST or RSX
 SST linkage to be other than type void.
 User Action: Declare the function with RSX AST or
 RSX SST linkage to be of type void.

 SYN_ILLFUNCPARAM, Illegal parameter for a
 function with RSX AST or RSX SST linkage
 Error: You have declared a function with RSX AST or
 RSX SST linkage, which has an illegal parameter. A
 parameter to a function with RSX AST or RSX SST
 linkage must be of word size. In addition, functions with
 RSX AST linkage must have at least four parameters,
 and functions with RSX SST linkage must have at least
 two parameters. If any of the above conditions are not
 met, you will get this error.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p168.decw$book (3 of 4)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 User Action: Correct the parameter.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p168.decw$book (4 of 4)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_ILLFUNCTYPE, Function-valued expression not
 found
 Error: A call with a function designator must have type
 function or a pointer to function.
 User Action: Rewrite your expression to include either
 type function or a pointer to function.

 SYN_ILLTYPEASN, Incompatible types for assign-
 ment
 Error: Your assignment contains incompatible types.
 User Action: Rewrite your assignment keeping in mind
 that the rules for type compatibility in assignment also
 apply to argument compatibility between actual argument
 expressions and their corresponding argument types in a
 function prototype.

 SYN_ILLTYPEINIT, Incompatible types for initializa-
 tion. Initializer ignored
 Warning: Initializing values must be of compatible type.
 User Action: Check the type of the object being declared
 and the initializer and ensure that they have the same
 type.

 SYN_INCOBJTYPE, Type of object "

 " must be
 complete
 Error: Auto , register , and globaldef objects must have
 a complete type.
 User Action: Ensure that the type is completed before
 the object is declared.

 SYN_INCOMPATRET, Type of returned expression is
 incompatible with function's type
 Error: The result of return must be of a compatible type
 of the declared function.
 User Action: Ensure that your return has a type
 compatible with the declared function.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p169.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 SYN_INCSTRUCTARG, A function argument may not
 have incomplete type
 Error: Occurs when a structure or union argument has
 incomplete type.
 User Action: Make sure that all function arguments
 have object type.

 SYN_INTVALERROR, Integer value not used where
 required
 Warning: You used a noninteger value as an initializer
 for an enum constant, or to specify the size of a bit field.
 You must specify these values as integer constants.
 User Action: Specify an integer constant.

 SYN_INVALINIT, The initialization of "

 " is not
 valid
 Warning: The indicated object cannot be initialized as
 specified. Some objects may not be initialized at all, such
 as functions, unions, and extern or globalref objects.
 In other cases, the initializer may not be appropriate,
 for example, a static pointer cannot be initialized with
 the address of an automatic variable. This and any
 subsequent initializers for the same object have been
 ignored.
 User Action: Eliminate or correct the initializer, or
 correct the type or storage class of the target object, or
 initialize the object with an explicit assignment.

 SYN_INVARRAYBOUND, The declaration of "

 "
 Error: In a declaration of an array, you omitted a
 required dimension bound value or specified an invalid
 value for a bound.
 For multidimensional arrays, you must specify bounds for
 dimensions other than the first. You also must specify a
 bound for the first (or only) dimension if this declaration
 is a definition. Valid bound values are integer constant

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p169.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 expressions greater than 0.
 User Action: Make sure that all required bounds are
 present and valid.

 SYN_INVARRAYDECL, "

 " is an improperly
 declared array
 Error: You improperly declared an array, such as an
 array of functions.
 User Action: Make sure that the syntax of the
 declarator correctly describes the object. (The declared
 object may not be what you want.)

 SYN_INVARROW, The "->" operator may only be
 applied to a pointer object
 Error: You used the ``->'' operator with something other
 than a pointer type.
 User Action: Check your code for use of the ``->''
 operator applied to something other than pointer type.

 SYN_INVBREAK, Invalid use of the "break" statement
 Error: You used break outside a loop or switch
 statement.
 User Action: Remove the break statement or check
 that any braces in recent loops or switch statements are
 properly balanced.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p169.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_INVCASEEXPR, The value in a "case" clause
 must have integral type
 Error: You used values within the case clause that did
 not have integral type.
 User Action: Check your use of values within the case
 clause; the values must be of integral type.

 SYN_INVCASENEST, The " case " clause must appear
 within a " switch " statement
 Error: The case clause did not appear within a switch
 statement.
 User Action: Rewrite your statement to include the
 case clause within the switch statement.

 SYN_INVCODEIPSECT, Code-i psect must be
 declared at file scope
 Warning: Code-i psect is declared inside a block.
 User Action: Remove code-i psect pragma from the
 block.

 SYN_INVCONSTPSECT, Constant psect can not be
 declared more than once
 Warning: There may be only one declaration of the
 const psect for each compilation unit.
 User Action: Remove the extraneous psect definition.

 SYN_INVCONTINUE, Invalid use of the "continue"
 statement
 Error: You used the continue statement outside the
 body of a for , while , or do statement.
 User Action: Remove the continue statement or check
 that any braces in recent loops are properly balanced.

 SYN_INVDEFNEST, The " default " clause must
 appear within a " switch " statement
 Error: The default clause did not appear within a
 switch statement.
 User Action: Rewrite your statement to include the
 default clause within the switch statement.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p170.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 SYN_INVDEREF, Address-valued expression not
 found
 Error: Attempted to dereference a nonpointer object.
 User Action: Remove the dereference operator; ensure
 that the correct operand is being used.

 SYN_INVDOTLVAL, The left side of a "." operator
 must be an lvalue
 Error: The ``.'' operator requires a left operand, which is
 a name for storage.
 User Action: Ensure that the left operand is an lvalue; if
 it is a pointer to storage, then ``->'' should be used.

 SYN_INVEQ, Invalid operand of an equality operator
 Error: You used an operand that is not compatible with
 the equality operator.
 User Action: Correct the operand.

 SYN_INVFIELDSIZE, The declaration of "

 "
 specifies an invalid field size; size of 16 bits
 assumed
 Warning: The indicated field declaration was invalid
 because it specified too large a size.
 User Action: Correct the declaration to specify either a
 single, smaller field or several contiguous fields.

 SYN_INVFIELDTYPE, The declaration of "

 " spec-
 ifies an invalid field data type; type " unsigned "
 assumed
 Warning: You declared a field with an invalid data type.
 Fields must be declared (and manipulated) as integers or
 enumerated types.
 User Action: Correct the declaration to specify a valid
 data type.

 SYN_INVFUNCCLASS, The declaration of an

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p170.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 identifier "

 " for a function that has a block
 scope shall have no explicit storage-class other
 than extern
 Warning: You declared a function with the wrong
 storage class.
 User Action: Change the storage class of your function
 to external.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p170.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_INVFUNCDECL, "

 " is an improperly declared
 function
 Error: You improperly declared a function. For example,
 you may have omitted the parameter list or a semicolon
 between the function and a previous declaration.
 User Action: Correct the syntax of the declaration.

 SYN_INVGLOBALNAME, Invalid global name "

 "
 Warning: The ASCII name specified cannot be converted
 into a valid Radix-50 name.
 User Action: Rename the global name.

 SYN_INVLINKAGE, Linkage for function "

 "
 must be specified before it is either defined or
 referenced
 Warning: Function linkage is specified after it is
 referenced or defined.
 User Action: Define the linkage before any references to
 the function.

 SYN_INVMEMNAME, The right operand of " . " or " -> "
 is not a declared name in this structure or union
 Error: The right operand of your ``.'' or ``->'' was not
 properly declared.
 User Action: Declare the right operand in the
 expression.

 SYN_INVOBJDEREF, The operand of "
 *

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p171.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 " (derefer-
 ence) must be a pointer to an object
 Error: The expression to which ``
 *

 '' is applied is not a
 pointer to an object.
 User Action: Ensure that the operand is of the proper
 type.

 SYN_INVPARELLIPSIS, The use of ellipsis in a
 function prototype conflicts with the function
 definition
 Error: Both function prototype and function definition
 must specify a variable parameter list.
 User Action: Make the function prototype consistent
 with the function definition.

 SYN_INVPRAGMA, Invalid pragma definition
 Warning: Syntax error detected in a pragma statement.
 User Action: Correct the syntax to one of the forms
 shown in Section 7.7.

 SYN_INVPROTODEF, The parameter list for a
 function prototype definition must associate
 identifier for each type in the parameter list
 Error: The function definition uses the prototype format
 but does not contain an identifier for each type in the
 parameter list.
 User Action: Place an identifier name in the appropriate
 type declaration.

 SYN_INVPSECTNAME, Invalid psect name specified
 Warning: A psect name must consist of 6 or fewer
 Radix-50 characters.
 User Action: Ensure that the name meets the
 requirements.

 SYN_INVPTRMATH, Invalid pointer arithmetic
 Error: You attempted to perform an invalid arithmetic
 operation on a pointer or pointers. The only valid
 arithmetic operations allowed with pointers are addition

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p171.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 and subtraction.
 For addition, the only allowable forms are as follows:
 pointer + integer
 pointer += integer
 For subtraction, the only allowable forms are as follows:
 pointer - integer
 pointer -= integer
 pointer - pointer
 In the last form, both pointers must point to objects of
 compatible type.
 User Action: Make sure that the expression conforms to
 one of the previous forms listed. If necessary, cast one or
 both operands to a compatible type.

 SYN_INVPTRSUBTYPE, Pointer subtraction must be
 between compatible pointer types
 Warning: You used incompatible pointer types in a
 pointer subtraction.
 User Action: Check to make sure your pointers are of
 compatible subtracting type. For subtraction, the only
 allowable forms are as follows:
 pointer - integer
 pointer -= integer
 pointer - pointer

 SYN_INVREL, Invalid operand of a relational
 operator
 Error: You used an operand that was not compatible
 with the relational operator you used.
 User Action: Correct the operand.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p171.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_INVSTORCLASS, The " auto " storage class is
 invalid for the declaration of "

 "
 Warning: You made one of the following programming
 errors:
 .
 You specified a storage class that is invalid in the
 context in which the declaration appears; for example,
 specifying auto in a declaration located outside of a
 function.
 .
 You specified a storage class that is incompatible with
 another storage class specifier; for example, specifying
 both static and extern .
 .
 You specified a storage class that is incompatible with
 the data type of the indicated declarator; for example,
 specifying globalvalue for an array.
 In all cases, the compiler ignores the storage class
 specifier.
 User Action: Correct the declaration.

 SYN_INVSUBSCRIPT, Invalid subscript; "[]" must be
 applied to an array or a pointer to an object, and
 an integer
 Error: You specified a subscript in reference to a bit-field.
 User Action: Correct the syntax. If the structure
 containing the bit-field is an array, you must specify
 the subscripts with the qualifier rather than with the
 member name.

 SYN_INVSUTYPE, The left operand of " . " or " -> "
 must be a (pointer to) a structure or union
 Error: The left operand of ``.'' or ``->'' was not a (pointer
 to) a structure or union.
 User Action: Correct the operand.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p172.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 SYN_INVSWITCHEXPR, The control expression in a
 "switch" statement must have integral type
 Error: The expression is not of integral type.
 User Action: Ensure that the expression is of integral
 type.

 SYN_INVTAGUSE, Invalid use of "

 " tag
 Error: You used a previously defined tag name in a
 declaration of a different type. For example:
 enum color {red, green, blue};
 struct color *cp;
 You may only use a given tag with one of the types
 enum , struct , or union . Any identifiers declared with
 the mismatched type will be undefined.
 User Action: Either make sure that each use of the tag
 name specifies the same type, or use different tag names
 with each type.

 SYN_INVUADDR, The operand of "&" must be an
 lvalue or function, and may not be a register or
 bitfield
 Warning: The ``&'' (address-of) operator must be applied
 to an object that has storage associated with it or to a
 function name.
 User Action: If ``&'' has been applied to a register
 value, the register keyword can be removed from the
 declaration; otherwise, ensure that the specified object has
 storage.

 SYN_INVVARIANT, Invalid declaration of variant
 aggregate "

 "
 Warning: You attempted an invalid variant structure or
 union declaration such as an array of variants, a pointer
 to a variant, or a list of variant names.
 User Action: Either remove the variant keywords from
 the declaration or make sure that the keywords are used

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p172.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 in a valid structure or union declaration.

 SYN_INVVOIDUSE, " void " is only valid in a
 parameter list when it appears alone; its use is
 ignored
 Warning: void has been used in a function prototype
 parameter list but is not the only item in the list.
 User Action: Either eliminate void or eliminate the
 extra parameter types in the parameter list.

 SYN_ITERSCALREQ, The controlling expression of
 an iteration statement must have scalar type
 Error: Occurs when for , while , or do statements have
 an incorrect type (such as struct) as the controlling
 expression.
 User Action: Use a scalar as the controlling expression
 when writing an iteration statement.

 SYN_LMUL_ARITH, The left operand of a "
 *

 " or " / "
 operator must have arithmetic type
 Error: You did not specify arithmetic type for the left
 operand of your operator.
 User Action: Correct the operand.

 SYN_LOGSCALREQ, Both operands of a logical
 operator must have integral type
 Error: You declared the operands in your logical operator
 as having a type other than integral.
 User Action: Correct the operand.

 SYN_LREM_INT, The left operand of a " % " operator
 must have integral type
 Error: You declared the left operand as having a type
 other than integral.
 User Action: Correct the operand.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p172.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_MAIN02PARAMS, The "main" routine should
 have 0 or 2 parameters
 Warning: The ``main'' routine should either specify no
 parameters or exactly two, like this:
 int main ()
 int main (int argc, char *argv [])
 User Action: Correct the declaration of ``main.''

 SYN_MAINRETTYPE, The "main" routine should
 specify a return type of "int"
 Warning: The ``main'' routine should be of type int, as in
 either of these declarations:
 int main ()
 int main (int argc, char *argv [])
 User Action: Correct the declaration of ``main.''

 SYN_MISPARAMNUMBER, The number of parame-
 ters declared does not match the number declared
 in a previous function prototype
 Error: A function prototype for this function, which
 appeared earlier in the source file, contains a different
 number of parameters than this declaration.
 User Action: Determine which declarator is correct and
 modify the other declarator to match it.

 SYN_MISPARAMTYPE, The type of parameter
 number 1 does not match the type declared in
 a previous function prototype
 Warning: The type of a parameter in a function
 definition does not match the type specified for that
 parameter in the previous prototype.
 User Action: Determine which type is correct for that
 parameter and correct either the function definition or
 the prototype.

 SYN_NODECL, Your program doesn't declare any
 data or routines
 Informational: A compilation unit should define at least
 one data item or routine. This might not happen, for

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p173.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 example, if the module were commented out.
 User Action: Ensure that the module contains a
 definition.

 SYN_NOTFUNC, Function-valued expression not
 found
 Error: You used an expression in the context of a
 function call, but the expression does not evaluate to a
 function.
 User Action: Make sure that the expression properly
 evaluates to a function; also make sure that you properly
 dereference any pointer to a function.

 SYN_NOTPARAMETER, "

 " is not listed in the
 function's formal parameter list; its declaration is
 ignored
 Warning: You declared the specified identifier as a
 function parameter, but the identifier does not appear in
 the parameter list. For example:
 f(a) int a,b; { . . . }
 The identifier b does not appear in the formal parameter
 list of function f. Its declaration is not portable and is
 probably a coding error. The compiler treats b as if it
 were declared inside the function definition; in this case, b
 becomes an automatic variable.
 User Action: Correct the declaration or the parameter
 list.

 SYN_PARSTK_OVRFLW, Parse stack overflow
 Fatal: The source code in your program was too
 complex, containing statements nested too deeply.
 User Action: Simplify the program.

 SYN_REDEFPROTO, "

 " conflicts with either the
 function definition or with a function prototype
 that appears earlier in the file

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p173.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 Warning: The prototype conflicts with a previous
 declaration of this function, either in number, type of
 arguments, or in the return type of the function.
 User Action: Determine what attribute does not match
 and what the correct attribute should be. Correct the
 invalid definition.

 SYN_RMUL_ARITH, The right operand of a "
 *

 " or " / "
 operator must have arithmetic type
 Error: You declared the right operand as having a type
 other than arithmetic.
 User Action: Correct the operand.

 SYN_RREM_INT, The right operand of a " % "
 operator must have integral type
 Error: You declared the right operand as having a type
 other than integral.
 User Action: Correct the operand.

 SYN_SHIFTINTREQ, Both operands of a shift
 operator must have integral type
 Error: You did not declare both operands of the shift
 operator to have integral type.
 User Action: Rewrite both operands to have integral
 type.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p173.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_SIZEOFOBJ, The "sizeof" operator must be
 applied to a complete object type
 Warning: An incomplete object has no defined size.
 User Action: Complete the type before using "sizeof."

 SYN_SYNTAXERROR , "

 " found "

 " when
 expecting "

 "
 Error: Syntax error detected.
 User Action: Check your syntax.

 SYN_TENTDEFINC, Tentative definition of "

 " has
 internal linkage, but its type is incomplete
 Error: The return type of a static function must be fully
 specified before the function can be used.
 User Action: Ensure that the type is completed.

 SYN_TOOMANYINITS, The initializer list for "

 "
 specifies too many initializers; excess initializers
 ignored
 Warning: You specified too many initializers for the
 indicated variable. (If the indicated item is an array or
 structure, it may be only partially initialized.)
 User Action: Make sure that all braces near the
 initializer sublists are balanced; if the item being initialized

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p174.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 is or contains an array, make sure that you accounted for
 all dimensions.

 SYN_TYPECONFLICT, "

 " conflicts with a previous
 data type in this declaration; previous data type
 ignored
 Warning: You specified more than one data type specifier
 in this declaration, and the indicated specifier conflicted
 with a previous one.
 User Action: Check for a missing semicolon in the
 previous declaration; otherwise, make sure that all
 specifiers are compatible.

 SYN_UCOMPINTREQ, The operand of a unary
 complement operator must have integral type
 Error: You declared the operand as having a type other
 than integral.
 User Action: Correct the operand.

 SYN_UIDSCALREQ, The operand of unary " ++ " or
 " " must be a scalar
 Error: You declared the operand as having a type other
 than scalar.
 User Action: Correct the operand.

 SYN_UMINARIREQ, The operand of a unary minus
 operator must have arithmetic type
 Error: You declared the operand as having a type other
 than arithmetic.
 User Action: Correct the operand.

 SYN_UNDECLFUN, Function "

 " not declared;
 assumed of type "extern int ()"
 Informational: You did not declare a function to be a
 specific type. The default type that will be assumed will
 be extern int .

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p174.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 User Action: Check to make sure that extern int is the
 function type you need; if not, redeclare the function to
 the necessary type.

 SYN_UNDECLNAME, Identifier "

 " is not declared
 within the scope of this usage
 Error: You referenced a variable that was never properly
 declared.
 User Action: Check that the identifier is declared, and
 that its case and spelling are consistent in all uses.

 SYN_UNDEFLABEL, Label "

 " referenced but not
 defined in this function
 Error: You wrote `` goto label-name'' for an undefined
 label. The scope of a label name is restricted to the
 function in which it is used as a label; goto statements
 cannot branch to labels inside other functions.
 User Action: Check the spelling of the label name or
 make other corrections as appropriate.

 SYN_UNDEFSTRUCT, Structure or union member
 "

 " has a type that is not fully defined at this
 point in the compilation
 Error: A member of either your structure or union has
 an incomplete data type.
 User Action: Correct the type of your structure or union
 member.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p174.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 SYN_UNOTSCALREQ, The operand of a unary not
 operator must have scalar type
 Error: You declared the operand as having a type other
 than scalar.
 User Action: Correct the operand.

 SYN_UPLSCALREQ, The operand of a unary plus
 operator must have scalar type
 Error: You declared the operand as having a type other
 than scalar.
 User Action: Correct the operand.

 SYN_VARNOTMEMBER, A variant aggregate must be
 a member of a struct or union
 Error: You attempted to specify a variant_struct or a
 variant_union outside of an aggregate declaration.
 User Action: If you intend to use the structure or union
 as declared, and if the structure or union is the outermost
 aggregate in a group of nested aggregates, replace the
 variant keywords with struct or union . If you intend to
 use the structure or union as a variant aggregate, and
 if the structure or union is otherwise properly declared,
 nest the declaration within a valid structure or union
 declaration. If you use the variant_struct or variant_
 union keywords in declarations other than structure or
 union declarations, remove the variant keywords.

 SYN_VOIDNOTFUNC, "

 " is not declared to be a
 function; only functions may be declared " void "
 Error: You declared an object other than a function to be
 void .
 User Action: Check the syntax of the declarator.

 TOO_MANY_ERRORS, Encountered more than "

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p175.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 "
 errors, compilation terminated
 Fatal: More errors were encountered than the
 installation-defined default error limit, or the limit
 specified with the /ERROR_LIMIT qualifier.
 User Action: Correct the errors or use the /ERROR_
 LIMIT qualifier to increase the error limit or the
 /NOERROR_LIMIT qualifier to eliminate the error
 limit.

 WF_DSOVERFLOW, Data set overflow in work file;
 increase the work file size with the /WORK_FILE_
 SIZE qualifier
 Fatal: The capacity of one of the PDP-11 C data sets
 has been exceeded. The PDP-11 C work file is internally
 divided into a number of data sets. The amount of storage
 consumed by data sets varies dynamically according to
 need. The maximum capacity of a data set is determined
 when PDP-11 C starts up and is based upon how the
 data set is internally defined and upon the size of the
 work file. For each 1K blocks of work file size, PDP-11 C
 doubles the capacity of its data sets at the expense of less
 efficient data packing in the work file.
 User Action: Increase the value specified with the
 /WORK_FILE_SIZE qualifier in 1K-block increments
 until the error no longer occurs.

 WF_FILEORDEV, File or device error on work file
 Fatal: An error occurred while opening, reading, or
 writing the PDP-11 C work file.
 User Action: Determine the cause of the error and
 correct.

 WF_INSUFFICIENTWF, Work file too small; increase
 the work file size with the /WORK_FILE_SIZE
 qualifier
 Fatal: PDP-11 C has run out of work file storage on a
 PDP-11 host.
 User Action: Increase the work file size with the
 /WORK_FILE_SIZE qualifier; increase the amount of
 extended (unmapped) memory available to PDP-11 C
 with the /MEMORY qualifier; or simplify the compilation
 unit.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p175.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 WF_INSUFFICIENT_MEMORY, Insufficient memory
 Fatal: Memory requirements exceeded available
 resources.
 User Action: On V AX/VMS host systems, decrease the
 size of the compilation unit or increase system quotas. On
 PDP-11 host systems, this error occurs when parsing
 complex command lines and indirect command line files;
 simplify the command lines or indirect command line
 files.

 WF_NOROOM, No room on device for work file
 Fatal: There was no room to open the PDP-11 C work
 file on the work file device.
 User Action: Purge or delete files on the work file device
 to make room for the PDP-11 C work file.

 WF_TOOMUCHMEM, The value specified with the
 /MEMORY qualifier is too large; specify a value of
 511 or smaller
 Fatal: The number of 8K-byte extended memory regions
 specified with the /MEMORY qualifier exceeds the 4M-
 byte physical memory limit of the PDP-11.
 User Action: Specify 511 or a smaller value.

 WF_UNEXPECTED, Unexpected I/O error on work
 file
 Fatal: An unexpected error occurred while opening,
 reading, or writing the PDP-11 C work file.
 User Action: Determine the cause of the error and
 correct.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p175.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 B. PDP-11 C Header Files
 This appendix lists the library header files for PDP-11 C. File
 location is system dependent:
 .
 On RSX and VMS, the header files are in the directory
 LB:[1,1].
 .
 On RSTE/E, the header files are in the directory CC$:.
 .
 On RT-11, the header files are in either the SY: or CLB:
 directory.
 In general, each header file declares functions, types, or
 macros used in the area of the Run-Time Library (RTL)
 indicated in the ``Description'' column in each of the tables in
 this appendix. You can print or type individual files, or you
 can issue the following command to print all files with their
 file names appearing at the top of each page:
 $ print lb:[1,1]*.h
 Table B-1 describes each of the Standard Library header
 files.

 Table B-2 describes each of the File Control Services (FCS)
 Extension Library header files.

 Table B-3 describes each of the Record Management Services
 (RMS) Extension Library header files.

 Table B-4 describes each of the system interface header files.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p176.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 C. PDP-11 C Internationalization
 This appendix addresses the two major areas of PDP-
 11 C internationalization: compiler and run-time
 internationalization.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p181.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 C.1 Compiler Internationalization
 In PDP-11 C, you can assign specific compiler character sets
 to four areas: source files, the message environment, listing
 files, and the execution environment. To specify character
 sets for character constants and strings, use the following
 charset pragmas, respectively:
 #pragma charset source <charset_name>
 #pragma charset message <charset_name>
 #pragma charset list <charset_name>
 #pragma charset execution <charset_name>
 PDP-11 C uses the the ISO-Latin-1 character set by default
 for the source files, messages, listing files, and execution
 environment. You can change to any of the character sets
 listed in Table 7-2, using the guidelines found in Section 7.7.1.
 The following is an example of the #pragma charset
 directive. In this example, the swiss character set is specified
 for the device on which the source file is to be displayed.
 #pragma charset source swiss
 When writing source files to be displayed on non-Digital
 devices (terminals, printers, and display devices), the use
 of trigraphs may be required. Trigraphs are 3-character
 sequences that represent specific characters that may
 not exist on some terminals. All occurrences of trigraph
 sequences (listed in Table 2-3) are replaced with the
 corresponding single character. See Section 2.16 for more
 information on trigraphs.
 As an example, the following source line:
 printf("Eh???/n");
 becomes (after replacing the trigraph sequence):
 printf("Eh?\n");

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p182.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 C.2 Run-Time Internationalization
 You can use the #pragma charset to specify the character
 set for character constants and character strings in your
 source program. In addition, PDP-11 C provides support
 for run-time internationalization in the locale.h header file
 that defines a structure and two functions used in supporting
 alternate character sets and other international support.
 The two functions that are provided are setlocale and
 localeconv .

 C.2.1 Set Locale Function (setlocale)
 The setlocale function is used to specify alternate character
 sets, collating sequences, and various formats (for example,
 money and time). The setlocale function takes two
 arguments:
 .
 The first argument specifies the category of the locale
 that you want to change.
 .
 The second argument specifies the locale you want to set
 the category to.
 The category argument which names the program's entire
 locale is LC_ALL. The other values for category name only a
 portion of the program's locale (LC_COLLATE, LC_CTYPE,
 LC_NUMERIC, LC_MONETARY, LC_TIME).

 Note

 For more information on the setlocale function,
 refer to the PDP-11 C Run-Time Library Reference
 Manual .

 In the following example, the setlocale function specifies a
 program's locale for all five categories:
 #include <locale.h> /*Include locale.h
 **header file.*/

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p183.decw$book (1 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 setlocale (LC_ALL,"french,danish,,french"); /*Name the locale
 **for all categories.*/
 The first argument in this example (LC_ALL) specifies
 that the locale of all categories will be changed. The second
 argument is a character string that specifies the locale for
 each of the five categories, separated by a comma. Omitting
 a category (by using two consecutive commas or by not
 specifying trailing arguments) yields the default locale for
 those categories. As you can see in the example, the following
 is set:
 .
 LC_COLLATE is set to french.
 .
 LC_CTYPE is set to danish.
 .
 LC_NUMERIC retains the default C locale.
 .
 LC_MONETARY is set to french.
 .
 LC_TIME retains the default C locale.
 The second example shows an alternate way to specify the
 program's locale by specifying one category at a time.
 #include <locale.h> /*Include locale.h
 **header file*/
 setlocale (LC_ALL,""); /*Reset all categories
 **to standard C locale*/
 setlocale (LC_COLLATE,"french"); /*Name the locale*/
 setlocale (LC_CTYPE,"danish"); /*for specific*/
 setlocale (LC_MONETARY,"french"); /*categories*/
 The first argument of each invocation of setlocale indicates
 that we will change only the locale of the category indicated.
 The second argument specifies to which locale that category
 is set. Note that in the previous example, only three
 categories were changed. The remaining categories will
 keep the C locale defaults. Both programs yield the same
 results.

 C.2.2 Defining a Locale Structure (localeconv)
 The localeconv function sets the components of an object of
 type struct lconv to values appropriate for the formatting
 of numeric quantities (monetary and otherwise) according
 to the rules of the current locale. If you have not specified
 any locale changes using setlocale , the default for all the

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p183.decw$book (2 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 categories is the C locale, which is ASCII.
 The localeconv function returns a pointer to the filled-in
 object.
 Example C-1 shows typical source code using localeconv .
 It sets the current locale for character functions and
 conversion to the french locale. The LC_TIME category
 retains the default locale. Localeconv() is called to access the
 monetary formatting data, and a number is converted from
 a floating-point value to a monetarily formatted quantity.
 The data in the lconv structure is used to format a positive
 monetary value.

 C.2.3 Character Handling Functions
 The function versions of the character handling functions
 defined in the ctype.h header file return the values from the
 selected locale based on the locale set by setlocale . Note that
 the macro versions support only the ASCII locale.
 The program in Example C-2 computes the number of
 alphanumeric characters in the locale ``C'' (the ASCII locale)
 in three different ways. First, the program uses the macro
 isalnum . Then, it takes the address of the function isalnum
 and invokes the function through its address. Finally, the
 program undefines the macro isalnum and leaves only the
 function definition in scope.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p183.decw$book (3 of 3)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D. Language Summary
 This appendix briefly describes the following C language
 features:
 .
 Data type keywords
 .
 Precedence of operators
 .
 Statements
 .
 Conversion rules
 .
 Escape sequences
 .
 Preprocessor directives

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p186.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D.1 Data Type Keywords
 Table D-1 shows data type keywords.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p187.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D.2 Precedence of Operators
 Table D-2 lists the operators from highest precedence to
 lowest. In the binary operator category, operators appear in
 descending order of precedence, line by line.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p189.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D.3 Statements

 Syntax:
 [expression] ;
 identifier : statement
 { [declaration-list] [statement-list] }
 if (expression) statement [else statement]
 while (expression) statement
 do statement while (expression)
 for ([expression] ; [expression] ; [expression]) statement
 switch (expression) statement
 case constant-expression statement
 default: statement
 break ;
 continue ;
 return [expression] ;
 goto identifier ;

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p191.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D.4 Conversion Rules

 Arithmetic Conversion

 Any operand of type: Is converted to:

 char int
 unsigned char unsigned int
 float double

 If operand type is:

 The result and the other operands
 are:

 double double
 unsigned unsigned

 Otherwise, both operands are: And the result is:

 int int

 Function Argument Conversion

 Any argument of type:

 If not within the scope
 of a function prototype,
 is converted to type:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p192.decw$book (1 of 2)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 float double
 char int
 array pointer to array
 function pointer to function

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p192.decw$book (2 of 2)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D.5 PDP-11 C Escape Sequences

 Character Mnemonic Escape Sequence

 bell BEL \a
 question mark ? \?
 newline NL \n
 horizontal tab HT \t
 vertical tab VT \v
 backspace BS \b
 carriage return CR \r
 form feed FF \f
 backslash \ \\
 apostrophe ' \ '
 quotes " \ "
 bit pattern ddd \ddd or \xddd

 Use the form ``\ddd'' to specify any byte value (usually an
 ASCII code), where the digits ddd are one to three octal digits.
 The octal digits are limited to 0 to 7.
 Similarly, use the form ``\xddd'' to specify any byte value
 (usually an ASCII code), where the digits are used to specify
 one or more hexadecimal digits.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p193.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 D.6 Preprocessor Directives

 Syntax:
 # define identifier [([param1 , . . . param2])] token-string
 # undef identifier
 # error tokens
 # include < file-spec >
 # include " file-spec "
 # if constant-expression
 # ifdef identifier
 # ifndef identifier
 # else
 # elif constant-expression
 # endif
 #[line] constant "string"
 #[line] constant identifier
 # module identifier identifier
 # module identifier "string"
 # pragma charset

 2
 4

 source
 message
 list
 execution

 3
 5

 8
 >
 >
 >
 >
 <
 >
 >

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p194.decw$book (1 of 5)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 >
 >
 :

 iso_latin_1
 french_canadian
 dec_mcs
 german
 ascii
 italian
 british
 norwegian
 danish
 portuguese
 dutch
 spanish
 finnish
 swedish
 french
 swiss

 9
 >
 >
 >
 >
 =
 >
 >
 >
 >
 ;
 # pragma psect

 8
 <
 :

 const
 static_ro
 static_rw
 code_i
 code_d

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p194.decw$book (2 of 5)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 9
 =
 ;

 2
 6
 6
 6
 6
 6
 6
 6
 6
 4

 ,

 8
 >
 >
 >
 <
 >
 >
 >
 :

 ro
 rw
 i
 d
 lcl
 gbl
 rel
 abs
 con
 ovr
 sav
 nosav

 9

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p194.decw$book (3 of 5)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 >
 >
 >
 =
 >
 >
 >
 ;

 ,...

 3
 7
 7
 7
 7
 7
 7
 7
 7
 5
 # pragma module identifier identifier
 # pragma module identifier "string"
 # pragma list

 8
 <
 :

 on
 off
 title "string"
 subtitle "string"

 9
 =
 ;
 # pragma linkage

 8
 >
 <

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p194.decw$book (4 of 5)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

 >
 :

 c
 pascal
 fortran
 rsx_ast
 rsx_sst
 rsx_csm

 9
 >
 =
 >
 ;

 [identifier,...]

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p194.decw$book (5 of 5)1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Glossary

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p195.decw$book1/25/06 3:45 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 1-1: Default Compiler Listing
 Example 1-1 DUA0:[C]EXAMPL.C; PDP-11 C V1.2-015 Page 1 1
 000001 6 February 1992 3:03 PM 2
 3 1 # ifdef __PDP11C
 2 4 # pragma list title "Example 1-1"
 3 5 # pragma module EXAMPL "000001"
 4 # endif
 5
 6 /* This module is used as an example to demonstrate the
 various listing options that are available with PDP-
 11 C. In particular, this comment shows how line wrap
 of long source lines appears in the listing. */
 7
 8 # include <setjmp.h>
 28 /* Use 6 character, extern names on the PDP-11 */
 29 # ifdef __PDP11C
 30 # define recovery_context RECCTX
 31 # define error_recovery ERRCVY
 32 # define process PROCES
 33 # endif
 34
 35 # define TRUE 1
 36 # define FALSE 0
 37
 38 jmp_buf recovery_context;
 39 int error_recovery (void);
 40 int process (void);
 41
 42 #ifdef __PDP11C
 43 4 # pragma list subtitle "main() - Main Entry Point"
 44 # endif
 45 int main (void)
 46 {
 47
 48 # if ERROR_RECOVERY
 6 1
 1: %PDPC-I-LEX_UNDEFIFMAC, Identifier is not currently a macro; constant zero
 assumed
 At line 27 in file SYS$SYSUSER:[RAITTO.C.LEX]EXAMPL.C;
 7 49 X if (setjmp(recovery_context) != 0)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p18.decw$book (1 of 2)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 50 X return error_recovery();
 51 X else
 52 X return process();
 53 # else
 54 return process();
 55 # endif
 56
 57 }
 Message summary: Informational 1 Warning 0 Error 0 8
 Compiler Command

 EXAMPL/LIST

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p18.decw$book (2 of 2)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 1-2: Compiler Listing Options
 EXAMPL Example 1-2 DUA0:[C]EXAMPL.C; PDP-11 C V1.2-015 Page 1
 000001 6 February 1992 3:03 PM
 1 # ifdef __PDP11C
 2 # pragma list title "Example 1-2"
 3 # pragma module EXAMPL "000001"
 4 # endif
 5
 6 /* This module is used as an example to demonstrate the
 various listing options that are available with PDP-
 11 C. In particular, this comment shows how line wrap
 of long source lines appears in the listing. */
 7
 8 # include <setjmp.h>
 1 9 1 /*
 10 1 ** setjmp.h
 11 1 */
 12 1 /* used by: setjmp() & longjmp() functions */
 13 1
 14 1 # ifndef __SETJMP_H
 15 1 # define __SETJMP_H
 16 1
 17 1 # define JMPBUF_STATE_SZ 8
 18 1
 19 1 typedef int jmp_buf[JMPBUF_STATE_SZ];
 2 1 typedef int jmp_buf[8];
 20 1
 21 1 # define setjmp c$stjp
 22 1 # define longjmp c$lgjp
 23 1 int setjmp (jmp_buf env);
 1 int c$stjp (jmp_buf env);
 24 1 void longjmp (jmp_buf env, int val);
 1 void c$lgjp (jmp_buf env, int val);
 25 1
 26 1 # endif
 27 1
 28 /* Use 6 character external names on the PDP-11 */
 29 # ifdef __PDP11C
 30 # define recovery_context RECCTX
 31 # define error_recovery ERRCVY

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p19.decw$book (1 of 3)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 32 # define process PROCES
 33 # endif
 34
 35 # define TRUE 1
 36 # define FALSE 0
 37
 38 jmp_buf recovery_context;
 1 jmp_buf RECCTX;
 39 int error_recovery (void);
 1 int ERRCVY (void);
 40 int process (void);
 1 int PROCES (void);
 41
 42 # ifdef __PDP11C
 43 # pragma list subtitle "main() - Main Entry Point"
 44 # endif
 45 int main (void)
 46 {
 EXAMPL Example 1-2 DUA0:[C]EXAMPL.C; PDP-11 C V1.2-015 Page 2
 000001 main() - Main Entry Point 6 February 1992 3:03 PM
 47
 48 # if ERROR_RECOVERY
 1 # if TRUE
 3 2 # if 1
 49 if (setjmp(recovery_context) != 0)
 1 if (c$stjp(recovery_context) != 0)
 1 if (c$stjp(RECCTX) != 0)
 50 return error_recovery();
 1 return ERRCVY();
 51 else
 52 return process();
 1 return PROCES();
 53 # else
 54 X return process();
 55 # endif
 56
 57 }
 4 .TITLE EXAMPL
 .IDENT /000001/
 .PSECT $READW,RW,D,GBL,REL,CON,SAV
 $READW:
 000000 RECCTX::.BLKB 16. ; RECCTX
 .GLOBL C$STJP,ERRCVY,PROCES,C$MAI

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p19.decw$book (2 of 3)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 .PSECT $CODEI
 5 6 7
 000000 MAIN:: ; main
 000000 010546 MOV R5,-(SP) ; 45
 000002 016746 000000G MOV RECCTX,-(SP) ; 49 RECCTX,
 000006 005746 TST -(SP)
 000010 004767 000000G CALL C$STJP ; c$stjp
 000014 012605 MOV (SP)+,R5
 000016 005726 TST (SP)+
 000020 001410 BEQ 1$
 000022 005746 TST -(SP) ; 50
 000024 004767 000000G CALL ERRCVY ; ERRCVY
 000030 012666 000004 MOV (SP)+,4(SP)
 000034 012605 MOV (SP)+,R5
 EXAMPL Example 1-2 DUA0:[C]EXAMPL.C; PDP-11 C V1.2-015 Page 3
 000001 main() - Main Entry Point 6 February 1992 3:03 PM
 000036 000207 RETURN
 000040 000407 BR 2$
 000042 005746 1$: TST -(SP) ; 52
 000044 004767 000000G CALL PROCES ; PROCES
 000050 012605 000004 MOV (SP)+,4(SP)
 000054 012605 MOV (SP)+,R5
 000056 000207 RETURN
 .END
 Compiler Command

 EXAMPL/LIST=EXAMPL_ALL/SHOW=ALL/DEFINE="ERROR_RECOVERY TRUE" 8

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p19.decw$book (3 of 3)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-1: Simple Addition in PDP-11 C
 /* This program adds two numbers and places the sum in * 1
 * the variable total. */
 int main(void) 2 /* The function name "main" */
 { /* Begins function body */
 3 int total; /* Variable of type "int" */
 /* Blank lines are allowed */
 4 total = 2 + 2; /* Answer placed in "total" */
 } /* Ends the function body */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p30.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-2: Output of Information
 /* This program adds two numbers, assigns the value 4 to *
 * variable total, and then prints the answer on the *
 * terminal screen. */
 #include <stdio.h> 1
 int main(void)
 {
 int total;
 total = 2 + 2;
 /* Print intro string */
 2 printf("Here is the answer: ");
 printf("%d.", total); /* Print the answer */
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p32.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-3: Output Using the Newline Character
 /* This program adds two numbers, stores the sum in the *
 * variable total, and then prints the answer on two *
 * separate lines on the terminal screen. */
 #include <stdio.h>
 int main(void)
 {
 int total;
 total = 2 + 2;
 /* Print intro string */
 printf("Here is the answer...\n");
 /* Print the answer */
 printf("%d.", total);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p33.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-5: Conditional Execution Using the switch Statement
 /* This program plays the same guessing game as the *
 * previous example except that it uses the switch *
 * statement. */
 #include <stdio.h>
 #include <ctype.h> 1 /* Include required module */
 int main(void)
 {
 int ch;
 printf("Guess what letter I'm thinking of!\n");
 ch = getchar();
 2 ch = tolower(ch); /* Convert "ch": lowercase */
 switch(ch) /* Examine "ch" */
 { /* Body of switch statement */
 case 'a' :
 printf("You're right!");
 break;
 default : /* Any other answer */
 printf("You're wrong.\n");
 printf("You'll have to try again!");
 }
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p36.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-6: Looping Using the do Statement
 /* This program plays the same guessing game as the *
 * other examples except that the user must guess until *
 * the answer is correct. This is accomplished using a *
 * do statement. */
 #include <stdio.h>
 #include <ctype.h>
 int main(void)
 {
 int ch;
 printf("Guess what letter I'm thinking of!\n");
 printf("Keep guessing until you get it!\n");
 do /* Do the following ... */
 { /* Beginning of loop body */
 ch = getchar();
 ch = tolower(ch);
 switch(ch)
 {
 case 'a' :
 printf("You're right!");
 break;
 /* Ignore RETURN (newline) ch */
 1 case '\n':
 break;
 default :
 printf("You're wrong.\n");
 printf("You'll have to try again!\n");
 } /* End of switch statement */
 } /* End of do loop body */
 /* Condition to be tested */
 2 while(ch != 'a');
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p37.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-7: Looping Using the for Statement
 /* This program plays the same guessing game as the *
 * previous examples except that the user is limited to *
 * three guesses. This is accomplished using a for *
 * statement. */
 #include <stdio.h>
 #include <ctype.h>
 int main(void)
 {
 int ch;
 int i; /* An incrementor for loop */
 printf("Guess what letter I'm thinking of!\n");
 printf("You have three guesses. Make them count!\n");
 /* Do the following 3 times */
 1 for (i = 1; i <= 3; i++)
 { /* Beginning of loop body */
 ch = getchar();
 ch = tolower(ch);
 switch(ch)
 {
 case 'a' :
 printf("You're right!");
 return;
 case '\n':
 2 --i;
 break;
 default :
 printf("You're wrong.\n");
 if (i != 3)
 printf("You'll have to try again!\n");
 } /* End of switch statement */
 } /* End of for loop body */
 printf("Sorry, you ran out of guesses!");
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p38.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-8: Case Conversion Program
 /* This program converts its input to lowercase. The *
 * first function passes control to the second function *
 * to convert a letter. Comments are located to the *
 * right of the code. */
 #include <stdio.h> /* To use I/O definitions */
 int lower (int c_up); /* Prototype for lower */
 /* function */
 int main(void)
 { 1
 FILE *infile, *outfile; /* Declare files */
 int i, c, c_out;
 /* Open "infile" for input */
 infile = fopen("ex113.in", "r");
 /* Open "outfile" for output */
 outfile = fopen("ex113.out", "w");
 /* While not end of file... */
 /* Get a char from the file */
 while ((c = getc(infile)) != EOF)
 {
 c_out = lower(c); /* Send char to "lower" */
 /* Output the char to file */
 putc(c_out, outfile);
 }
 return; /* Optional return statement */
 }
 /* --- *
 * Beginning of the next function definition: *
 * --- */
 /* Function and parameter *
 /* type and name */
 int lower (int c_up) 2
 { /* Beginning function body */
 /* If capital, convert */
 if (c_up >= 'A' && c_up <= 'Z')
 return c_up - 'A' + 'a';
 else /* Else, return as is */
 return c_up;
 } /* End of function body */
 /* End function definition */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p43.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-9: Including <stdarg.h> in a Parameter List
 #include <stdarg.h>
 #include <stdio.h>
 static void argprint (char *type, ...)
 {
 va_list ap; /* Argument pointer */
 char p;
 va_start (ap, type); /* Initialize ap to point to first *
 * unnamed argument. Last named *
 * argument is used by va_start to *
 * get started */
 while ((p = *type++) != '\0') {
 switch (p) { /* Each call to va_arg returns one *
 * arg and steps ap to the next */
 case 'i': printf ("\t%d", va_arg (ap, int)); break;
 case 'd': printf ("\t%f", va_arg (ap, double)); break;
 case 's': printf ("\t%s", va_arg (ap, char *)); break;
 default: printf ("\nOnly know how to print one of [ids]\n"); break;
 }
 }
 printf ("\n");
 va_end (ap); /* call when done */
 }
 int main () {
 argprint ("iis", 3, 4, "string1");
 argprint ("dsi", 3.0, "string2", 4);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p44.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-10: Declaring Functions
 #include <stdio.h>
 char lower(int); 1 /* The function declaration */
 int main(void)
 {
 .
 .
 .
 while ((c = getc(infile)) != EOF)
 {
 /* The function call */
 c_out = lower(c);
 putc(c_out, outfile);
 }
 }
 char lower(int c_up) /* The function definition */
 {
 .
 .
 .
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p46.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-11: Declaring Functions Passed as Arguments
 int x(void) { return 25; }
 1 /* Defined before it is *
 * used */
 int z[10];
 int main(void)
 {
 2 int y(void); /* Function declaration */
 .
 .
 .
 3 funct(x, y, z); /* Passed as addresses */
 .
 .
 .
 }
 y(void) { return 30; } /* Function definition */
 void funct(int (*f1)(), int(*f2)(), int* a) 4
 /* Function definition *
 * Declare arguments as *
 * pointers to functions *
 * returning an integer */
 {
 (*f1)(); /* A call to a function */
 .
 .
 .
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p48.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-12: Echo Program Using Command-Line Arguments
 /* This program echoes the command-line arguments. */
 #include <stdio.h>
 int main(int argc, char *argv[])
 {
 int i;
 /* argv[0] is program name */
 printf("program: %s\n",argv[0]);
 for (i = 1; i < argc; i++)
 printf("argument %d: %s\n", i, argv[i]);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p49.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-13: Scope of Variable Declarations in Nested Blocks
 /* This program shows how variables with the same *
 * identifier can be of different data types if located *
 * in different blocks. */
 #include <stdio.h>
 int main(void)
 { /* Outer block of "main" */
 1 int i;
 i = 1;
 .
 .
 .
 if (i == 1)
 { /* An inner block */
 2 float i;
 .
 .
 .
 i = 3e10;
 printf("Inner-block variable i:%f\n",i);
 }
 printf("Outer-block variable i:%d\n",i);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p55.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 3-1: Counting Blanks, Tabs, and Newlines Using the switch
 Statement
 /* This program counts blanks, tabs, and newlines in text *
 * entered from the keyboard. */
 #include <stdio.h>
 int main()
 {
 int number_tabs = 0, number_lines = 0, number_blanks = 0;
 int ch;
 while ((ch = getchar()) != EOF)
 switch (ch)
 {
 1 case '\t': ++number_tabs;
 2 break;
 case '\n': ++number_lines;
 break;
 case ' ' : ++number_blanks;
 }
 printf("Blanks\tTabs\tNewlines\n");
 printf("%6d\t%6d\t%6d\n", number_blanks,
 number_tabs,number_lines);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p67.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 5-1: Initializing an Array of Structures
 #include <stdio.h>
 int main()
 {
 int l, m;
 static struct
 {
 char ch;
 int i;
 float c;
 } ar[2][3] =
 1 {
 2 {
 3 { 'a', 1, 3e10 },
 { 'b', 2, 4e10 },
 { 'c', 3, 5e10 },
 }
 };
 printf("row/col\t ch\t i\t c\n");
 printf("-------------------------------------\n");
 for (l = 0; l < 2; l++)
 for (m = 0; m < 3; m++)
 {
 printf("[%d][%d]:", l, m);
 printf("\t %c \t %d \t %e \n",
 ar[l][m].ch, ar[l][m].i, ar[l][m].c);
 }
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p97.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 5-2: Character String Constants and Arrays
 /* This program plays the same guessing games as the *
 * previous examples except that it uses character *
 * string constants and arrays. */
 #include <stdio.h>
 int main(void)
 {
 int ch; /* Declare a character */
 /* Initialize messages */
 char *greeting = "Guess which letter I'm thinking of!";
 char *message1 = "You're right!";
 char *message2 = "You're wrong.";
 char *message3 = "You'll have to try again!";
 char correct[2];
 correct[0] = 'a'; /* Store correct letters */
 correct[1] = 'A';
 printf("%s\n", greeting); /* %s = char string */
 ch = getchar();
 if (ch == correct[0] || ch == correct[1])
 printf("%s", message1);
 else
 {
 printf("%s\n", message2);
 printf("%s\n", message3);
 }
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p100.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 5-3: Single Storage Allocation of Unions
 /* This example illustrates the storage maintenance of *
 * unions with different size members. */
 #include <stdio.h>
 #include <string.h>
 int main(void)
 {
 union /* Declare the union */
 {
 char lastname[8]; /* Array for a last name */
 char firstinit; /* Char. for first initial */
 } overlap = "Lincoln";
 /* Copy and print members */
 printf("%s\n", overlap.lastname);
 strcpy(overlap.lastname, "Jackson");
 printf("%s\n", overlap.lastname);
 overlap.firstinit = 'M';
 printf("%c\n", overlap.firstinit);
 printf("%s\n", overlap.lastname);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p101.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 5-4: Structures
 /* This program plays the same guessing game as the *
 * previous examples except that it uses a structure. */
 #include <stdio.h>
 int main(void)
 {
 int ch;
 char *greeting1 = "Guess which letter I'm thinking of!";
 char *greeting2 = "You've 3 guesses. Make them count!";
 char *message1 = "You're right!";
 char *message2 = "You're wrong.";
 char *message3 = "You'll have to try again!";
 char *message4 = "Sorry, you've run out of guesses!";
 int i;
 /* Store information */
 1 struct storage /* Structure tag = storage */
 {
 char small_a; /* One correct letter */
 char capital_a; /* Another correct letter */
 char newline_ch; /* newline character */
 int num_guesses; /* Number of guesses */
 };
 /* Declare "letter" *
 * using tag "storage" */
 2 struct storage letter = {'a', 'A', '\n'};
 letter.num_guesses = 3;
 printf("%s\n", greeting1);
 printf("%s\n", greeting2);
 for (i = 1; i <= letter.num_guesses; i++)
 {
 ch = getchar();
 if (ch == letter.small_a || ch == letter.capital_a)
 {
 printf("%s", message1);
 3 return;
 }
 else
 if (ch == letter.newline_ch)
 --i; /*Don't count carriage return*/
 else

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p102.decw$book (1 of 2)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 {
 printf("%s\n", message2);
 if (i != 3)
 printf("%s\n", message3);
 }
 } /* End of for loop body */
 printf("%s", message4);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p102.decw$book (2 of 2)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 6-1: Scope and Externally Defined Variables
 Compilation Unit 1 Compilation Unit 2
 ------------------ ------------------
 int EXT_2; int EXT_1;
 static int STAT;
 f1() f3()
 { {
 . extern int EXT_2;
 . .
 . .
 . .
 } }
 extern int EXT_1;
 f2() f4()
 { {
 . .
 . .
 . .
 } .
 }
 f5()
 {
 static int STAT;
 .
 .
 .
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p111.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 6-2: Reinitializing Two auto Variables
 /* This example prints the values of two distinct auto *
 * variables that have the same identifier. */
 #include <stdio.h>
 int main(void)
 {
 1 int i, x = 2;
 printf("main: %d\n",x);
 for (i = 0; i < 1; i++)
 {
 2 int x = 3;
 printf("for loop: %d\n",x);
 }
 printf("main: %d\n", x);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p115.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 6-3: Using the globalvalue Specifier
 /* This program illustrates references to previously defined *
 * globalvalue symbols. */
 #include <stdio.h>
 int test();
 globalvalue FAIL = 0;
 int main(void)
 {
 char c;
 /* Get a char from stdin */
 while ((c = getchar()) != EOF)
 test(c);
 }
 /* -- *
 * The following code is contained in a separate compilation *
 * unit. *
 * -- */
 #include <stdio.h>
 #include <ctype.h> /* Include proper module */
 globalvalue FAIL; /* Declare global symbols */
 test(param_c)
 char param_c; /* Declare parameter */
 {
 /* Test to see if alnum is true */
 if ((isalnum(param_c)) != FAIL)
 printf("%c\n", param_c);
 return;
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p120.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 7-1: Nested Substitution Directives
 /* Show multiple substitutions and listing format */
 #define AUTHOR james + LAST
 int main()
 {
 int writer,james,michener,joyce;
 #define LAST michener
 writer = AUTHOR;
 #undef LAST
 #define LAST joyce
 writer = AUTHOR;
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p126.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 7-2: Using _ _RAD50 and _ _RAD50L Macros
 1 struct FILE_SPEC
 2 {
 3 short device;
 4 long file_name;
 5 short file_type;
 6 };
 7
 8 struct FILE_SPEC myfile =
 9 {
 10 __RAD50 ("DL1"),
 1 1 0015377u ,
 11 __RAD50L ("MYFILE"),
 2 1 0007211252456ul ,
 12 __RAD50 ("DAT"),
 1 0014474u ,
 13 };

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p137.decw$book1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 8-1: Setting Up Your Own Locale Tables
 #pragma list title "tmlc - Define a user's own strange locale."
 #pragma module "tmlc", "V01.00"
 /*
 * INCLUDE FILES:
 */
 #include <defloc.h>
 #include <stdio.h>
 #include <locale.h>
 /*
 * GLOBAL STORAGE or STRUCTURE DEFINITIONS:
 */
 /* Non-monetary formatting table */ 1
 typedef struct {
 char *decimal_point; /* "." */
 char *thousands_sep; /* "" */
 char *grouping; /* "" */
 } lc_nmformat;
 /* Monetary formatting table */
 typedef struct {
 char *decimal_point; /* "" */
 char *thousands_sep; /* "" */
 char *grouping; /* "" */
 char *int_curr_symbol; /* "" */
 char *currency_symbol; /* "" */
 char *mon_decimal_point; /* "" */
 char *mon_thousands_sep; /* "" */
 char *mon_grouping; /* "" */
 char *positive_sign; /* "" */
 char *negative_sign; /* "" */
 char int_frac_digits; /* CHAR_MAX */
 char frac_digits; /* CHAR_MAX */
 char p_cs_precedes; /* CHAR_MAX */
 char p_sep_by_space; /* CHAR_MAX */
 char n_cs_precedes; /* CHAR_MAX */
 char n_sep_by_space; /* CHAR_MAX */
 char p_sign_posn; /* CHAR_MAX */
 char n_sign_posn; /* CHAR_MAX */
 } lc_mformat;
 typedef struct {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (1 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 char *abbrev_weekday_names[7];
 char *full_weekday_names[7];
 char *abbrev_month_names[12];
 char *full_month_names[12];
 char *am_pm[2];
 char *time_zones[24];
 } lc_time_strings;
 /*
 **
 **
 ** Test Strange Character Set Types:
 */
 /* Define table used for support of the character-testing functions 2
 which are affected by setting the locale LC_CTYPE.
 The affected functions are found in Locale Control section of
 the ANSI C standard.
 */
 #define _tab_ (_type_ + 1) /* Allow EOF as an argument in CTYPE
 functions. */
 static const char _type_ [] = {
 0, /* Octal Ascii */
 _C, _C, _C, _C, _C, _C, _C, _C, /* 000-007 */
 _C, _SC, _SC, _SC, _SC, _SC, _C, _C, /* 010-017 \b\n\t\f\r */
 _C, _C, _C, _C, _C, _C, _C, _C, /* 020-027 */
 _C, _C, _C, _C, _C, _C, _C, _C, /* 030-037 */
 _S, _P, _P, _V, _V, _V, _V, _P, /* 040-047 !"#$%&' */
 _P, _P, _V, _V, _P, _P, _P, _V, /* 050-057 ()*+,-./ */
 _XD, _XD, _XD, _XD, _XD, _XD, _XD, _XD, /* 060-067 01234567 */
 _XD, _XD, _P, _P, _V, _V, _V, _P, /* 070-077 89:;<=>? */
 _V, _XL, _XL, _XL, _XL, _XL, _XL, _L, /* 100-107 @ABCDEFG */
 _L, _L, _L, _L, _L, _L, _L, _L, /* 110-117 HIJKLMNO */
 _L, _L, _L, _L, _L, _L, _L, _L, /* 120-127 PQRSTUVW */
 _L, _L, _L, _P, _V, _P, _V, _V, /* 130-137 XYZ[\]^_ */
 _V, _XU, _XU, _XU, _XU, _XU, _XU, _U, /* 140-147 `abcdefg */
 _U, _U, _U, _U, _U, _U, _U, _U, /* 150-157 hijklmno */
 _U, _U, _U, _U, _U, _U, _U, _U, /* 160-167 pqrstuvw */
 _U, _U, _U, _P, _V, _P, _V, _C, /* 170-177 xyz{|}~ */
 /* Eight bit characters. */
 0, 0, 0, 0, _C, _C, _C, _C, /* 200-207 */
 _C, _C, _C, _C, _C, _C, _C, _C, /* 210-217 */
 _C, _C, _C, _C, _C, _C, _C, _C, /* 220-227 */
 0, 0, 0, _C, _C, _C, _C, _C, /* 230-237 */
 0, _P, _V, _V, 0, _V, 0, _V, /* 240-247 ¡¢£ ¥ §*/

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (2 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 _V, _V, _V, _V, 0, 0, 0, 0, /* 250-257 ¨©ª« */
 _V, _V, _V, _V, 0, _V, _V, _P, /* 260-267 °±²³ µ¶·*/
 0, _V, _V, _V, 0, _V, _V, _P, /* 270-277 ¹º»¼½ ¿*/
 _L, _L, _L, _L, _L, _L, _L, _L, /* 300-307 ÀÁÂÃÅÆÇÈ*/
 _L, _L, _L, _L, _L, _L, _L, _L, /* 310-317 ÈÉÊËÌÍÎÏ*/
 0, _L, _L, _L, _L, _L, _L, _L, /* 320-327 ÑÒÓÔÕÖ×*/
 _L, _L, _L, _L, _L, _L, 0, _V, /* 330-337 ØÙÚÛÜÝ ß*/
 _U, _U, _U, _U, _U, _U, _U, _U, /* 340-347 àáâãäåæç*/
 _U, _U, _U, _U, _U, _U, _U, _U, /* 350-357 èéêëìíîï*/
 0, _U, _U, _U, _U, _U, _U, _U, /* 360-367 ñòóôõö÷*/
 _U, _U, _U, _U, _U, _U, 0, 0 /* 370-377 øùúûüý */
 };
 /* Define a table used for support of the character collating 3
 functions which are affected by setting the locale portion
 for LC_COLLATE. The affected functions are found in Locale
 Control section of the ANSI C standard.
 */
 /* Use Standard DEC MULT. Character Collating Sequence */
 static const unsigned char _order_ [] = {
 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31,
 32, 33, 34, 35, 36, 37, 38, 39,
 40, 41, 42, 43, 44, 45, 46, 47,
 48, 49, 50, 51, 52, 53, 54, 55,
 56, 57, 58, 59, 60, 61, 62, 63,
 64, 65, 66, 67, 68, 69, 70, 71,
 72, 73, 74, 75, 76, 77, 78, 79,
 80, 81, 82, 83, 84, 85, 86, 87,
 88, 89, 90, 91, 92, 93, 94, 95,
 96, 97, 98, 99,100,101,102,103,
 104,105,105,107,108,109,110,111,
 112,113,114,115,116,117,118,119,
 120,121,122,123,124,125,126,127,

 128,129,130,131,132,133,134,135, /* 200-207 */
 136,137,138,139,140,141,142,143, /* 210-217 */
 144,145,146,147,148,149,150,151, /* 220-227 */
 152,153,154,155,156,157,158,159, /* 230-237 */
 160,161,162,163,164,165,166,167, /* 240-247 ¡¢£ ¥ §*/
 168,169,170,171,172,173,174,175, /* 250-257 ¨©ª« */
 176,177,178,179,180,181,182,183, /* 260-267 °±²³ µ¶·*/

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (3 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 184,185,186,187,188,189,190,191, /* 270-277 ¹º»¼½ ¿*/
 192,193,194,195,196,197,198,199, /* 300-307 ÀÁÂÃÅÆÇÈ*/
 200,201,202,203,204,205,206,207, /* 310-317 ÈÉÊËÌÍÎÏ*/
 208,209,210,211,212,213,214,215, /* 320-327 ÑÒÓÔÕÖ×*/
 216,217,218,219,220,221,222,223, /* 330-337 ØÙÚÛÜÝ ß*/
 224,225,226,227,228,229,230,231, /* 340-347 àáâãäåæç*/
 232,233,234,235,236,237,238,239, /* 350-357 èéêëìíîï*/
 240,241,242,243,244,245,246,247, /* 360-367 ñòóôõö÷*/
 248,249,250,251,252,253,254,255 /* 370-377 øùúûüý */
 };
 /*
 4 Strange character mapping table for toupper;
 uppercase characters are mapped to lowercase,
 lowercase characters are mapped to upper.
 */
 static const unsigned char _upcase_[] = {
 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31,
 32, 33, 34, 35, 36, 37, 38, 39,
 40, 41, 42, 43, 44, 45, 46, 47,
 48, 49, 50, 51, 52, 53, 54, 55,
 56, 57, 58, 59, 60, 61, 62, 63,
 64,
 97, 98, 99,100,101,102,103, /* A... to a ... */
 104,105,106,107,108,109,110,111,
 112,113,114,115,116,117,118,119,
 120,121,122, /* ...Z to ...z */
 91, 92, 93, 94, 95,
 96,
 65, 66, 67, 68, 69, 70, 71, /* abcdefg */
 72, 73, 74, 75, 76, 77, 78, 79, /* hijklmno */
 80, 81, 82, 83, 84, 85, 86, 87, /* pqrstuvw */
 88, 89, 90, /* xyz */
 123,124,125,126,127,
 128,129,130,131,132,133,134,135, /* 200-207 */
 136,137,138,139,140,141,142,143, /* 210-217 */
 144,145,146,147,148,149,150,151, /* 220-227 */
 152,153,154,155,156,157,158,159, /* 230-237 */
 160,161,162,163,164,165,166,167, /* 240-247 ¡¢£ ¥ §*/
 168,169,170,171,172,173,174,175, /* 250-257 ¨©ª« */
 176,177,178,179,180,181,182,183, /* 260-267 °±²³ µ¶·*/

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (4 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 184,185,186,187,188,189,190,191, /* 270-277 ¹º»¼½ ¿*/
 192,193,194,195,196,197,198,199, /* 300-307 ÀÁÂÃÅÆÇÈ*/
 200,201,202,203,204,205,205,207, /* 310-317 ÈÉÊËÌÍÎÏ*/
 208,209,210,211,212,213,214,215, /* 320-327 ÑÒÓÔÕÖ×*/
 216,217,218,219,220,221, /* 330-335 ØÙÚÛÜÝ */
 222,223, /* 336-337 ß*/
 192,193,194,195,196,197,198,199, /* 300-307 àáâãåæçè*/
 200,201,202,203,204,205,205,207, /* 310-317 èéêëìíîï*/
 208,209,210,211,212,213,214,215, /* 320-327 ñòóôõö÷*/
 216,217,218,219,220,221,254,255 /* 330-335 øùúûüý */
 };
 /*
 Make a strange character mapping table for tolower;
 lowercase characters are mapped to upper, uppercase
 characters are mapped to lower.
 */
 static const unsigned char _downcase_[] = {
 0, 1, 2, 3, 4, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 14, 15,
 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31,
 32, 33, 34, 35, 36, 37, 38, 39,
 40, 41, 42, 43, 44, 45, 46, 47,
 48, 49, 50, 51, 52, 53, 54, 55,
 56, 57, 58, 59, 60, 61, 62, 63,
 64,
 97, 98, 99,100,101,102,103, /* A... to a ... */
 104,105,106,107,108,109,110,111,
 112,113,114,115,116,117,118,119,
 120,121,122, /* ...Z to ...z */
 91, 92, 93, 94, 95,
 96,
 65, 66, 67, 68, 69, 70, 71, /* abcdefg */
 72, 73, 74, 75, 76, 77, 78, 79, /* hijklmno */
 80, 81, 82, 83, 84, 85, 86, 87, /* pqrstuvw */
 88, 89, 90, /* xyz */
 123,124,125,126,127,
 128,129,130,131,132,133,134,135, /* 200-207 */
 136,137,138,139,140,141,142,143, /* 210-217 */
 144,145,146,147,148,149,150,151, /* 220-227 */
 152,153,154,155,156,157,158,159, /* 230-237 */
 160,161,162,163,164,165,166,167, /* 240-247 ¡¢£ ¥ §*/
 168,169,170,171,172,173,174,175, /* 250-257 ¨©ª« */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (5 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 176,177,178,179,180,181,182,183, /* 260-267 °±²³ µ¶·*/
 184,185,186,187,188,189,190,191, /* 270-277 ¹º»¼½ ¿*/
 224,225,226,227,228,229,230,231, /* 300-307 ÀÁÂÃÄÅÆÇ*/
 232,233,234,235,236,237,238,239, /* 310-317 ÈÉÊËÌÍÎÏ*/
 240,241,242,243,244,245,246,247, /* 320-327 ÑÒÓÔÕÖ×*/
 248,249,250,251,252,253, /* 330-335 ØÙÚÛÜÝ */
 222,223, /* 356-357 ß*/
 224,225,226,227,228,229,230,231, /* 340-347 àáâãäåæç*/
 232,233,234,235,236,237,238,239, /* 350-357 èéêëìíîï*/
 240,241,242,243,244,245,246,247, /* 360-367 ñòóôõö÷*/
 248,249,250,251,252,253,254,255 /* 370-377 øùúûüý */
 };
 /* Monetary formatting data -- for strange Locale */
 static lc_mformat const MFT_TM = 5
 {
 ";", /* *decimal_point */
 ",", /* *thousands_sep */
 "\3", /* *grouping */
 "TMM", /* *int_curr_symbol */
 "Mr.", /* *currency_symbol */
 ";", /* *mon_decimal_point*/
 ",", /* *mon_thousands_sep*/
 "\3", /* *mon_grouping */
 "", /* *positive_sign */
 "^", /* *negative_sign */
 2, /* int_frac_digits */
 0, /* frac_digits */
 1, /* p_cs_precedes */
 0, /* p_sep_by_space */
 1, /* n_cs_precedes */
 0, /* n_sep_by_space */
 1, /* p_sign_posn */
 1 /* n_sign_posn */
 };

 static lc_nmformat const NFT_TM = 6
 {
 ";", /* *decimal_point; */
 ",", /* *thousands_sep; */
 "\3" /* *grouping; */
 };
 /* Time table -- for strange Locale */ 7
 static const lc_time_strings TIM_STR = {

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (6 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 { /* abbreviated name weekday name table for strange locale */
 "Sun", "Mon", "Tom",
 "Wed", "Tomm", "Fri",
 "Sat"
 },
 { /* Full name weekday name table for C locale */
 "Sunday", "Monday", "Tomday",
 "Wednesday", "Thomasday", "Friday",
 "Saturday"
 },
 { /* Abbreviated month name table */
 "Jan", "Feb", "Mar",
 "Apr", "play", "Jun",
 "Jul", "Aug", "Sep",
 "Octy", "Nov", "Dec"
 },
 { /* Full month name table */
 "January", "February", "March",
 "April", "Play-day", "June",
 "July", "August", "September",
 "Octopus", "November", "December"
 },
 { /* AM, PM */
 "SAM","SPAM"
 },
 { /* Time zone table std time zone names for strftime */
 "UTC","","","","TAST","TEST","TCST","TMST","TPST","","","",
 "","","","","","","","","","","",""
 }
 };
 /* Define collating -- strange locale */
 DEFINE_LC_COLL("tom_m",tmcl,_order_,_upcase_,_downcase_)
 /* Define collating type -- strange locale */
 DEFINE_LC_CTYPE("tom_m",tmty,_tab_)
 /* Monetary formatting data -- strange Locale */
 DEFINE_LC_MONETARY("tom_m",tmmn,&MFT_TM)
 /* Non Monetary formatting data -- strange Locale */
 DEFINE_LC_NUMERIC("tom_m",tmnc,&NFT_TM)
 /* Time formatting data -- strange Locale */
 DEFINE_LC_TIME("tom_m",tmtm,&TIM_STR)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p148.decw$book (7 of 7)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example C-1: Sample Program Using localeconv
 #include <stdio.h>
 #include <math.h>
 #include <string.h>
 #include <locale.h>
 #include <stdlib.h>
 int main()
 {
 struct lconv *formatp; /* Pointer to conversion table. */
 double frval; /* Fraction value. */
 char str[20]; /* Formats. */
 char *clocale; /* Displays the current locale. */
 char *ovalue;
 double value = 2.5;
 if (setlocale(LC_ALL,"french,french,french,french") == NULL)
 return;
 /* Sets the first 4 categories to french: */
 /* LC_COLLATE: Used by strcoll() and strxfrm() */
 /* LC_CTYPE: Used by the character testing FUNCTIONS */
 /* LC_NUMERIC: Numeric formatting (returned by localeconv()) */
 /* LC_MONETARY: Monetary formatting (returned by localeconv()) */
 /* LC_TIME is set to the default ("C") locale */
 clocale = setlocale(LC_ALL, NULL);
 printf("The current locales are: %s\n",clocale);
 /* Inquires. This should return */
 /* "french,french,french,french,C" */
 formatp = localeconv(); /* Gets the current monetary */
 /* conversion format. */
 frval = modf(value,&value); /* Splits into fraction and whole */
 /* number, places the whole number */
 /* back into value. */
 strcpy(ovalue,formatp->currency_symbol);
 /* Copies the currency symbol to */
 /* output. */
 if (formatp->p_sep_by_space) /* If a space should precede the */
 strcat(ovalue," "); /* number, insert it here. */
 sprintf(str,"%g",value); /* Converts the whole number. */
 strcat(ovalue,str); /* Copies to output. */
 if (formatp->frac_digits) { /* If fractional digits are allowed */
 /* scale by fractional digits, and */

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p184.decw$book (1 of 2)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

 /* use frac_digits as the precision */
 /* parameter for %*.0g conversion */
 /* specification. */
 sprintf(str,"%*.0g",
 formatp->frac_digits, /* Precision, replaces (*). */
 frval * (formatp->frac_digits * 10)); /*Scales up. */
 strcat(ovalue,formatp->mon_decimal_point);
 /* Copies the locale's version of */
 /* the decimal point. */
 strcat(ovalue,str); /* Copies the fractional digits. */
 }
 printf("%s\n",ovalue); /* Returns pointer to output string. */
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p184.decw$book (2 of 2)1/25/06 3:46 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example C-2: Using the Macro and Function Versions of isalnum
 #include <ctype.h>
 #include <locale.h>
 #include <stdio.h>
 int main (void)
 {
 short c0, n0 = 0, n1 = 0, n2 = 0;
 setlocale(LC_CTYPE, "C");
 for (c0 = 0; c0 < 128; c0++)
 {
 if (isalnum(c0)) n0++; /* invoke the macro version of isalnum */
 if ((&isalnum)(c0)) n1++; /* force the call the function isalnum */
 #undef isalnum /* undef the macro version of isalnum */
 if (isalnum(c0)) n2++; /* invoke the function version of isalnum */
 }
 printf("The number of alphanumeric characters is %d, %d, and %d.", n0, n1, n2);
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p185.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Figure 1-1: DCL Commands for Developing Programs

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p15.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Figure 2-1: rvalues, lvalues, and Assigning Pointers

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p40.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Figure 2-2: The Indirection Operator in Assignments

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p41.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Figure 4-1: Boolean Algebra and the Bitwise Operators

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p78.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Figure 4-2: Shift Operators

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p79.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Figure 5-1: Alignment of Structure Members

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p98.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 1-1: Copying Files Among Operating Systems

 To media format:

 From:

 RSX Format
 Disk

 RT-11 Format
 Disk

 DOS Format
 Tape

 Backup Format
 Tape

 RSTS <NA> FIT PIP BACKUP
 RSX COPY (DCL)
 PIP (MCR)

 FLX FLX <NA>
 RT-11 <NA> COPY <NA> <NA>
 VMS COPY EXCHANGE EXCHANGE BACKUP

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p21.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 2-1: PDP-11 C Keywords

 Keyword Meaning

 Type specifiers:

 int Integer
 long 32-bit integer
 signed Signed integer
 unsigned Unsigned integer
 short 16-bit integer
 char 8-bit integer
 float Single-precision, floating-point number
 double Double-precision, floating-point number
 struct Structure (aggregate of other types)
 union Union (aggregate of other types)
 variant_struct

 1
 Structure (aggregate of other types)
 variant_union

 1
 Union (aggregate of other types)
 enum Enumerated scalar type
 void Function return type
 const Type qualifier
 volatile Type qualifier

 Storage-class specifiers:

 auto Allocated at function block activation
 static Allocated at compile time

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p52.decw$book (1 of 3)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

 register Allocated at function block activation
 extern Allocated at compile time
 globaldef

 1
 Definition of global variable
 globalref

 1
 Reference to global variable
 globalvalue

 1
 Definition or declaration of global value

 1
 Type specifier or storage class qualifier provided for compatibility with VAX C. Is a keyword when
compiled using the
 /NOSTANDARD qualifier. Is not a keyword when compiled using the /STANDARD=ANSI qualifier

 Keyword Meaning

 Storage-class specifiers:

 typedef Tagged set of type specifiers
 readonly

 1
 Location may only be read
 noshare

 1
 Is ignored by PDP-11 C

 Statements:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p52.decw$book (2 of 3)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

 goto Transfers control unconditionally
 return Terminates a function and optionally returns a value to the caller
 continue Causes next iteration of containing loop
 break Terminates its corresponding switch or loop
 if Executes following statement conditionally
 else Provides an alternative for the if statement
 for Iterates the next statement (zero or more times) under control of three expressions
 do Iterates the next statement (one or more times) while a given condition is true
 while Iterates the next statement (zero or more times) while a given expression is true
 switch Executes one or more of the specified cases (multiway branch)
 case Begins one case for switch
 default Provides default case for switch

 Operator:

 sizeof Computes size of operand in bytes

 1
 Type specifier or storage class qualifier provided for compatibility with VAX C. Is a keyword when
compiled using the
 /NOSTANDARD qualifier. Is not a keyword when compiled using the /STANDARD=ANSI qualifier

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p52.decw$book (3 of 3)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 2-2: VAX C Keywords

 Keyword Meaning

 Type specifiers:

 int Integer (On a VAX, 32 bits)
 long 32-bit integer
 unsigned Unsigned integer
 short 16-bit integer
 char 8-bit integer
 float Single-precision floating-point number
 double Double-precision floating-point number
 struct Structure (aggregate of other types)
 union Union (aggregate of other types)
 variant_struct Structure (aggregate of other types)
 variant_union Union (aggregate of other types)
 enum Enumerated scalar type
 void Function return type
 const Type qualifier
 volatile Type qualifier

 Storage-class specifiers:

 auto Allocated at every block activation
 static Allocated at compile time
 register Allocated at every block activation
 extern Allocated by an external data definition (at compile time)
 globaldef Definition of global variable
 globalref Reference to global variable
 globalvalue Definition or declaration of global value

 Keyword Meaning

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p53.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

 Storage-class specifiers:

 readonly Allocated in read-only program section
 noshare Assigned NOSHR program section attribute
 typedef Tagged set of type specifiers

 Statements:

 goto Transfers control unconditionally
 return Terminates a function and optionally returns a value to the caller
 continue Causes next iteration of containing loop
 break Terminates its corresponding switch or loop
 if Executes following statement conditionally
 else Provides an alternative for the if statement
 for Iterates the next statement (zero or more times) under control of three expressions
 do Iterates the next statement (one or more times) until a given condition is false
 while Iterates the next statement (zero or more times) while a given expression is true
 switch Executes one or more of the specified cases (multiway branch)
 case Begins one case for switch
 default Provides default case for switch
 entry None (reserved for future use)

 Operator:

 sizeof Computes size of operand in bytes

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p53.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 2-3: Trigraph Sequences and Equivalence Characters

 Trigraph
 Sequence

 Equivalence
 Character

 ??= #
 ??([
 ??/ \
 ??)]
 ??' ^
 ??< {
 ??! |
 ??> }
 ??- ~

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p60.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 4-1: PDP-11 C Operators

 Operator Example Result

 [] a[i] Access to array members
 -> ptr->memb Access to members of structure and union objects
 . struct.memb Access to members of structure and union objects
 + [unary] + a Value of a
 - [unary] - a Negative of a
 *

 [unary]
 *

 a Reference to object at address a
 & [unary] &a Address of a
 ~ ~a One's complement of a
 ++ [prefix] ++a a after increment
 ++ [postfix] a++ a before increment
 [prefix] a a after decrement
 [postfix] a a before decrement
 sizeof sizeof(t1)
 sizeof e

 Size in bytes of type t1
 Size in bytes of expression e
 (type-name) (t1)e Expression e, converted (cast) to type t1
 + a + b a plus b
 - [binary] a-b a minus b
 *

 [binary] a
 *

 b a times b
 / a / b a divided by b
 % a % b Remainder of a/b (a modulo b)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p73.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

 >> a >> b a, right-shifted b bits
 << a << b a, left-shifted b bits
 < a < b 1 if a < b; 0 otherwise
 > a < b 1 if a > b; 0 otherwise
 <= a <= b 1 if a <= b; 0 otherwise
 >= a >= b 1 if a >= b; 0 otherwise

 Operator Example Result

 = = a = = b 1 if a equal to b; 0 otherwise
 != a != b 1 if a not equal to b; 0 otherwise
 & [binary] a & b Bitwise AND of a and b
 | a | b Bitwise OR of a and b
 ^ a ^ b Bitwise XOR (exclusive OR) of a and b
 && a && b Logical AND of a and b (yields 0 or 1)
 k a k b Logical OR of a and b (yields 0 or 1)
 ! !a Logical NOT of a (yields 0 or 1)
 ?: a ? e1 : e2 Expression e1 if a is nonzero,
 Expression e2 if a is zero
 = a = b b (assigned to a)
 += a += b a plus b (assigned to a)
 -= a -= b a minus b (assigned to a)
 *

 = a
 *

 = b a times b (assigned to a)
 /= a /= b a divided by b (assigned to a)
 %= a %= b Remainder of a/b (assigned to a)
 >>= a >>= b a, right-shifted b bits (assigned to a)
 <<= a <<= b a, left-shifted b bits (assigned to a)
 &= a &= b Bitwise a AND b (assigned to a)
 | = a | = b Bitwise a OR b (assigned to a)
 ^= a ^= b Bitwise a XOR b (assigned to a)
 , e1,e2 e2 (e1 evaluated first)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p73.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 4-2: Precedence of PDP-11 C Operators

 Category Operator Associativity

 Primary () [] -> . Left to right
 Unary + - ! ~ ++ (type)
 *

 & sizeof Right to left
 Binary (mult.)
 *

 / % Left to right
 Binary (add.) + - Left to right
 Binary (shift) << >> Left to right
 Binary (relat.) < <= > >= Left to right
 Binary (equal.) = = != Left to right
 Binary (bitand) & Left to right
 Binary (bitxor) ^ Left to right
 Binary (bitor) | Left to right
 Binary (AND) && Left to right
 Binary (OR) k Left to right
 Conditional ?: Right to left
 Assignment = += -=
 *

 = /= %= >>= <<= &=
 ^= | =

 Right to left
 Comma , Left to right

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p74.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 5-1: PDP-11 C Data Type Keywords

 Scalar Aggregate Other Type

 char struct void
 double union
 enum variant_struct
 float variant_union
 int
 long
 short
 signed
 unsigned

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p87.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 5-2: Size and Range of PDP-11 C Integers

 Keyword Size Range

 long
 long int
 signed long
 signed long int

 32 bits -2,147,483,648 to
 2,147,483,647
 unsigned long
 unsigned long
 int

 32 bits 0 to 4,294,967,295
 int
 short
 short int
 signed
 signed int
 signed short
 signed short int

 16 bits -32,768 to 32,767
 unsigned
 unsigned short
 unsigned short
 int

 16 bits 0 to 65,535
 char
 signed char

 8 bits -128 to 127
 unsigned char 8 bits 0 to 255

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p89.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p89.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 5-3: PDP-11 C Escape Sequences

 Character Mnemonic Escape Sequence

 newline NL \n
 horizontal tab HT \t
 vertical tab VT \v
 backspace BS \b
 carriage return CR \r
 form feed FF \f
 backslash \ \\
 apostrophe ' \ '
 quotes " \ "
 bit pattern ddd \ddd or \xddd
 bell BEL \a
 question mark ? \?

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p90.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 6-1: PDP-11 C Storage Classes and Storage-Class Specifiers

 Storage
 Class Specifiers Reference Section

 Internal auto , register ,
 absence of specifier inside a block or function
 1

 Section 6.3
 Static static Section 6.4
 Global extern ,
 absence of specifier outside of all functions

 Section 6.5

 1
 Functions declared without a storage-class specifier are of the global storage class, by default.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p109.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 6-2: Scope and the Storage-Class Specifiers

 Inside a Function

 Outside a Function

 Storage Class

 Lexical
 Scope

 Link-Time
 Scope

 Lexical
 Scope

 Link-Time
 Scope

 auto enclosing
 block

 No illegal illegal
 register enclosing
 block

 No illegal illegal
 static enclosing
 block

 No CU

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p110.decw$book (1 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

 1
 No
 extern enclosing
 block

 Yes CU

 1
 Yes
 globalvalue enclosing
 block

 Yes CU

 1
 Yes
 (none) enclosing
 block

 No CU

 1
 Yes

 1
 Compilation Unit still must be declared before used.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p110.decw$book (2 of 2)1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 6-3: Location, Lifetime, and the Storage-Class Keywords

 Storage Class Location Lifetime

 (none) Psect, stack, or
 register

 Temporary or permanent
 auto Stack or register Temporary
 register Stack or register Temporary
 static Psect Permanent
 extern Psect Permanent
 globalvalue No storage allocated Permanent

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p113.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 7-1: Logical Names for PDP-11 C Include Files

 Host System Quoted Form

 Bracketed Form
 (Logical Name 1)

 Bracketed Form
 (Logical Name
 2) Bracketed Form (Standard Installation Location)

 PDP-11 C

 VMS C$INCLUDE: PDP11C$INCLUDE: <NA> LB:[1,1]
 RSX-11M-
 PLUS
 and
 Micro /RSX

 C$INCLUDE: PDP11C$INCLUDE: CLB: LB:[1,1]
 RSX-11M <NA> <NA> CLB: LB:[1,1]
 RSTS/E <NA> PDP11$INCLUDE: CLB: CC$:
 RT-11 <NA> <NA> CLB: SY:

 VAX C

 VMS C$INCLUDE: VAXC$INCLUDE: <NA> SYS$LIBRARY:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p130.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 7-2: PDP-11 Character Sets

 iso_latin_1 french_canadian
 dec_mcs german
 ascii italian
 british norwegian
 danish

 1
 portuguese
 dutch spanish
 finnish swedish
 french swiss

 1
 The ``danish'' and ``norwegian'' character sets are synonymous.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p134.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 7-3: Psect Types and Associated Data Types

 Psect Type Types of Data

 const String literals, character constants, numeric constants. The default attributes for psects
 of this type are con, d, lcl, nosav, ro, and rel. The default name is $CONST.
 static_ro Objects declared with the const attribute. The default attributes for psects of this type are
 con, d, gbl, sav, ro, and rel. The default name is $READO.
 static_rw Objects declared with the static or extern attribute, but not with the const attribute.
 The default attributes for psects of this type are con, d, gbl, sav, rw, and rel. The default
 name is $READW.
 code_i Function code. The default attributes for psects of this type are con, i, lcl, nosav, ro, and
 rel. The default name is $CODEI.
 code_d Data generated as part of the function code. The default attributes for psects of this type
 are con, d, lcl, nosav, ro , and rel. The default name is $CODED.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p135.decw$book1/25/06 3:47 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 8-1: PDP-11 RTL Psects

 Name Use

 CC$ALL RMS default ALL block.
 CC$FAB RMS default FAB block.
 CC$DAT RMS default DAT block.
 CC$KEY RMS default KEY block.
 CC$NAM RMS default NAM block.
 CC$PRO RMS default PRO block.
 CC$RAB RMS default RAB block.
 CC$SUM RMS default SUM block.
 C$CCT0
 C$CCT2

 Character collating table. Used for locale-specific routines to determine the collating
 sequence of each character set.
 C$CMT0
 C$CMT2

 Character mapping table. Used for locale-specific routines to determine the results of
 character mapping functions for each character set.
 C$CTT0
 C$CTT2

 Character testing table. Used for locale-specific routines to determine the results of
 character testing functions for each character set.
 C$END0
 C$END1
 C$END2
 C$END3

 The C$ENDx psects are used for end of task processing. The addresses of functions to
 be called by the PDP-11 C RTL at task-exit time are placed in the psect C$END1. For
 instance, the address of the routine that ensures all files are closed is placed in C$END1.
 This is separate from the atexit system function. The psects C$END0, C$END1, and
 C$END3 are reserved for use by the PDP11-C RTL. The addresses of routines to be

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p142.decw$book (1 of 4)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

called
 at task exit can be placed in the psect C$END2. Modules that define this psect may not
 reside in a resident library.
 C$FCSI Instructions for PDP-11 C FCS Extension Library routines. These routines provide
 support for calling FCS routines.
 C$INI0
 C$INI1
 C$INI2
 C$INI3

 Similar to the C$ENDx psects, the C$INIx psects are used to provide the addresses of
 routines to be called at task startup. The psects C$INI0, C$INI1, and C$INI3 are re-
 served for use by the PDP-11 C RTL. The psect C$INI2 is available to place the addresses
 of routines to be called at task startup. Modules that define this psect may not reside in a
 resident library.
 C$INIR Code for initialization routines.
 C$MFT0
 C$MFT2

 Monetary formatting table. Used for locale-specific routines to determine the results of
 monetary formatting functions for each character set.

 Name Use

 C$NFT0
 C$NFT2

 Numeric formatting table. Used for locale-specific routines to determine the results of
 numeric formatting functions for each character set.
 C$OTSC Constant data for PDP-11 C Object Time System (OTS) routines.
 C$OTSD Read data for the PDP-11 C OTS routines.
 C$OTSH RT-11 only. Used to determine size of C$OTSI and C$STDI psects.
 C$OTSI Instructions for PDP-11 C OTS routines. These routines handle most of the math and
 conversion functions.
 C$OTSJ RT-11 only. Used to determine size of C$OTSI and C$STDI psects.
 C$OTSR Constant data for PDP-11 C OTS routines.
 C$OTSW Writeable storage for PDP-11 C OTS routines. Modules that contain this psect may not
 reside in a resident library.
 C$RMSI Instructions for PDP-11 C RMS Extension Library routines. These routines provide

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p142.decw$book (2 of 4)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 support for calling RMS routines.
 C$STDC Constant data for the Standard Library routines.
 C$STDD Read data for the Standard Library routines.
 C$STDI Instructions for the Standard Library routines.
 C$STDR Constant data for the Standard Library routines.
 C$TIM0
 C$TIM2

 Time formatting table. Used for locale-specific routines to determine the results of time
 formatting functions for each character set.
 $PFCXT FCS Transfer Vector. Standard I/O calls to FCS go through this vector. Routines con-
 taining this psect may not reside in a resident library because the psect contains ref-
 erences to FCS routines. However, this does allow several other routines to reside in a
 resident library.
 $PIOXT I/O Transfer Vector. This is used to allow PDP-11 C to access several low-level I/O
 systems easily. $PIOXT contains two addresses for each low-level I/O action used by
 PDP-11 C. One address is for support for native I/O for that action, the other is for
 support for either RMS or FCS I/O for that action. Modules that define this psect may not
 reside in a resident library.
 $PRLUN Bit mask used for reserving LUNs. The first word indicates the number of words that
 follow. These make up the mask. Modules that define this psect may not reside in a
 resident library.

 Name Use

 $PRMXT RMS Transfer Vector. All Standard I/O calls to RMS go through this vector. Routines
 containing this psect may not reside in a resident library, because the psect contains
 references to several RMS routines. However, this allows a number of other routines to
 live in resident libraries.
 $$C The PDP-11 C OTS work area. This is read/write data space used by the RTL. Modules
 that define this psect may not reside in a resident library.
 $$CAST OTS work area psect containing structure required by asctime () function.

 1
 $$CCLK OTS work area psect containing storage required for correct use of the clock function.

 1
 $$CEXI OTS work area psect containing storage required to register the addresses of the functions
 to be called during the execution of the atexit () routine.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p142.decw$book (3 of 4)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 1
 $$CGEN OTS work area psect containing storage required to support the getenv () function.

 1
 $$CLOC OTS work area psect containing storage required to support the locale functions.

 1
 $$CMLL OTS work area psect containing storage required to support memory allocation
 functions.

 1
 $$CSIG OTS work area psect containing storage required to support the signal functions.

 1
 $$CSIO OTS work area psect containing storage required to support standard I/O operations.

 1
 $$CTIM OTS work area psect containing storage for the required struct tm.

 1

 1
 This read/write psect will only appear in the user task if the related functions are referenced in the
user's program.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p142.decw$book (4 of 4)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table 8-2: Global Symbols

 Format to Exclude

 1
 Symbol

 d, i, u $PULON, $PLONG
 o, p $POLON
 x, X $PHLON
 f, e, E, g, G $PFLOA, $PFLOE

 1
 Where two symbols are shown, a globalvalue statement for both symbols must appear in the program.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p150.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table B-1: PDP-11 C Standard Library Header Files

 Module Description

 assert.h Definition of the assert macro
 ctype.h Character type and macro definitions for character classification and mapping functions
 errno.h Error number definitions
 float.h Macro definitions that provide implementation-specific floating-point limits
 limits.h Macro definitions that provide implementation-specific constraints
 locale.h Localization and formatting of dates and times
 math.h Math functions
 setjmp.h Mechanism for bypassing normal function call and return protocol
 signal.h Signal and condition handling value definitions
 stdarg.h Access to variable length argument lists specified through the ellipsis notation in a
 function prototype
 stddef.h Common definitions
 stdio.h Standard I/O definitions
 stdlib.h General utility functions
 string.h String-handling function definitions
 time.h Time manipulation functions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p177.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table B-2: PDP-11 C FCS Extension Library Header Files

 Module Description

 fcs.h FCS values, offsets, and data structures
 fcsfhb.h FCS file header block
 fcsiff.h FCS index file format

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p178.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table B-3: PDP-11 C RMS Extension Library Header Files

 Module Description

 fab.h File access block definitions
 nam.h Name block definitions
 rab.h Record access block definitions
 rms.h All RMS structures and return status values
 rmsdef.h RMS return status values
 rmsops.h RMS Extension Library operations
 rmsorg.h Replacement for RMS Extension Library ORG macro
 rmspoo.h RMS Extension Library pool space
 xab.h Extended attribute block definitions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p179.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table B-4: PDP-11 C System Interface Header Files

 Module Description

 rstsys.h Defines an interface to RSTS/E system-provided routines
 rsxsys.h Defines an interface to RSX system-provided routines
 rtsys.h Defines an interface to RT-11 system-provided routines
 nam.h Name block definitions
 rab.h Record access block definitions

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p180.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table D-1: Data Type Keywords

 Keyword Meaning

 Type specifiers:

 int Integer
 long 32-bit integer
 signed Signed integer
 unsigned Unsigned integer
 short 16-bit integer
 char 8-bit integer
 float Single-precision, floating-point number
 double Double-precision, floating-point number
 struct Structure (aggregate of other types)
 union Union (aggregate of other types)
 variant_struct

 1
 Structure (aggregate of other types)
 variant_union

 1
 Union (aggregate of other types)
 enum Enumerated scalar type
 void Function return type
 const Type qualifier
 volatile Type qualifier

 Storage-class specifiers:

 auto Allocated at function block activation
 static Allocated at compile time

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p188.decw$book (1 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 register Allocated at function block activation
 extern Allocated at compile time
 globaldef

 1
 Definition of global variable
 globalref

 1
 Reference to global variable
 globalvalue

 1
 Definition or declaration of global value

 1
 Type specifier or storage class specifier provided for compatibility with VAX C. Only available when
compiling
 /NOSTANDARD.

 Keyword Meaning

 Storage-class specifiers:

 typedef Tagged set of type specifiers

 Storage-class qualifier:

 readonly

 1
 Location may only be read
 noshare

 1

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p188.decw$book (2 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 Is ignored by PDP-11 C

 1
 Type specifier or storage class specifier provided for compatibility with VAX C. Only available when
compiling
 /NOSTANDARD.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p188.decw$book (3 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Table D-2: Precedence of Operators

 Category Association Operator

 Primary Left to right () [] -> .
 Unary Right to left ! ~ ++ - (type) + -
 *

 & sizeof
 Binary Left to right
 *

 / %
 + -
 << >>
 < <= > >=
 = = !=
 &
 ^
 |
 &&
 | |
 Conditional Right to left ?:
 Assignment Right to left = += -=
 *

 = /= %= >>=
 <<= &= ^= | =
 Comma Left to right ,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p190.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 5.4 Floating-Point Numbers (float, double)
 When declaring floating-point variables, you determine the
 amount of precision needed for the stored object. In PDP-11
 C, you can have either single-precision or double-precision
 variables. The representation of the data type float is a
 32-bit (single precision) floating point object.
 The representation of the data type double is a 64-bit
 (double precision) floating point object.
 The sizes and supported ranges of PDP-11 C floating-point
 numbers are as follows:
 float
 Float is a 32-bit keyword with a range of:
 FLT_MAX to FLT_MAX
 FLT_MAX is approximately equal to:
 1 : 7 £ 10

 38
 The minimum positive floating number is FLT_MIN, which
 is approximately equal to:
 2 : 9 £ 10

 39
 Float values are precise to 6 decimal digits.
 double
 Double is a 64-bit keyword with a range of:
 DBL_MAX to DBL_MAX
 DBL_MAX is approximately equal to:
 1 : 7 £ 10

 38
 The minimum positive floating number is DBL_MIN, which
 is approximately equal to:
 2 : 9 £ 10

 39
 Double values are precise to 16 decimal digits.
 The exact values of FLT_MAX, FLT_MIN, DBL_MAX, and
 DBL_MIN may be found in float.h .
 A floating-point constant has an integral part, a decimal

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p91.decw$book (1 of 2)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 point, a fractional part, the letter e or E, and an optionally
 signed integer exponent. The integral and fractional parts
 consist of decimal digits; you may omit either the integral or
 fractional part. You may omit either the decimal point with
 the following digits or the exponent (e,E), but not both.
 By default, floating-point constants are of type double .
 However, using the suffix (F,f) will yield type float and the
 suffix (L,l) will yield long double . Note that in PDP-11 C,
 long double is the same as double .
 The following are examples of floating-point constants:
 3.0e10
 3.0E-10
 3.0e+10
 3E10F
 3.0L
 .120e2
 .120

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p91.decw$book (2 of 2)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1
 Brian W. Kernighan and Dennis M. Ritchie, The C
 Programming Language, Second Edition (Englewood Cliffs,
 New Jersey: Prentice-Hall, 1988).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p12.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1
 Brian W. Kernighan and Dennis M. Ritchie, The C
 Programming Language, Second Edition (Englewood Cliffs,
 New Jersey: Prentice-Hall, 1988), p.1.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p27.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 Example 2-4: Conditional Execution Using the if Statement
 /* This program asks the user to guess a letter. The *
 * program tells whether the answer is correct or *
 * incorrect. The program is hard coded to accept 'a' or *
 * 'A' as the correct letter. */
 #include <stdio.h>
 int main(void)
 {
 int ch; /* Declare a character */
 /* Ask the user to guess */
 printf("Guess which letter I'm thinking of!\n");
 1 ch = getchar(); /* Get the character */
 /* Correct = "a" or "A" */
 2 if (ch == 'a' || ch == 'A')
 /* If correct guess */
 printf("You're right!");
 else /* If incorrect guess */
 {
 printf("You're wrong.\n");
 printf("You'll have to try again!");
 }
 }

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p35.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 1
 Bruce Anderson, ``Type Syntax in the Language C: An
 Object Lesson in Syntactic Innovation,'' SIGPLAN Notices
 15, No. 2 (March 1980).

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p106.decw$book1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 additive operator
 An operator that performs addition (+) or subtraction (-).
 These operators perform arithmetic conversion on each of the
 operands, if necessary. See also arithmetic conversion rules.

 aggregate
 A data structure (array, structure, or union) composed of
 segments called members. You declare the members to be of
 either a scalar or aggregate data type. Members of an array
 are called elements and must be of the same data type. A
 structure has named members that can be of different data
 types. A union is a structure that is as long as its longest
 declared member and that contains the value of only one
 member at a time.

 ampersand (&)
 As a unary operator, computes the address of its operand. As
 a binary operator, performs a bitwise AND on two operands;
 both must be of integral type. As an assignment operator
 (&=), performs a bitwise AND on two expressions and
 assigns the result to the left object. The double ampersand
 (&&), a binary operator, performs a logical AND on two
 operands. See also binary operator, bitwise operator, logical
 operator, and unary operator.

 argument
 An expression that appears within the parentheses of a
 function call. The expression is evaluated and the result
 is copied into the corresponding parameter of the called
 function. See also argument passing and parameter.

 argument passing
 The mechanism by which the value of the argument in a
 function call is copied to a parameter in the called function.
 In PDP-11 C, all arguments are passed by value; that is,
 the parameter receives a copy of the argument's value.
 Therefore, a function called in PDP-11 C cannot modify
 the value of an argument except by using its address. In
 general, addresses are passed using the ampersand operator

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p196.decw$book (1 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 (see ampersand (&)) in the function call or by passing a
 pointer variable. In addition, using an array or function
 name (an array with no brackets or function identifier with
 no parentheses) as an argument results in the passing of the
 address of the array or function.

 arithmetic conversion rules
 The set of rules that govern the changing of a value of
 an operand from one data type to another in arithmetic
 expressions. Conversions take place in assignments by
 changing the type of the right operand's result to that of
 the object referred to by the left operand; the resultant type
 also applies to the assignment expression. Conversions are
 also performed when arguments are passed to functions.

 arithmetic operator
 A PDP-11 C operator that performs a mathematical
 operation. In an expression, certain operations take
 precedence (are performed first) over other operations.
 The unary minus operator (-) is at the highest level of
 precedence. At the next level are the binary operators for
 multiplication (
 *

), division (/), and mod (%). At the next
 level are addition (+) and subtraction (-). There is no
 exponentiation operator. If necessary, all the binary operators
 perform the arithmetic conversions on their operands. See
 also arithmetic conversion rules and binary operator.

 arithmetic type
 One of the integral data types, enumerated types, single- or
 double-precision floating-point (float or double) types.

 array
 An aggregate data type consisting of subscripted members,
 called elements, all of the same type. Elements of an array
 can be one of the fundamental types or can be structures,
 unions, or other arrays (to form multidimensional arrays).

 assignment expression
 An expression that has the following form:

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p196.decw$book (2 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 E1 asgnop E2
 Expression E1 must evaluate to an lvalue, the operator
 asgnop is an assignment operator, and E2 is an expression.
 The type of an assignment expression is that of its left
 operand. The value of an assignment expression is that of
 the left operand after the assignment takes place. If the
 operator is of the form op=, then the operation E1 op (E2) is
 performed, and the result is assigned to the object referenced
 by E1; E1 is evaluated once.

 assignment operator
 The combination of an arithmetic or bitwise operator with the
 assignment symbol (=); also, the assignment symbol by itself.
 See also assignment expression.

 asterisk (
 *

)
 As a unary operator, treats its operand as an address
 and results in the contents of that address. As a binary
 operator, multiplies two operands, performing the arithmetic
 conversions, if necessary. As an assignment operator (
 *

 =),
 multiplies an expression by the value of the object referenced
 by the left operand, and assigns the product to that object. See
 also unary operator and binary operator.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p196.decw$book (3 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 auto storage class
 A storage class that defines a variable whose storage is
 allocated automatically upon entry into a function or block,
 and is automatically deallocated upon exit from a function or
 block. See also block.

 binary operator
 An operator that is placed between two operands. The binary
 operators include arithmetic operators, shift operators,
 relational operators, equality operators, bitwise operators
 (AND, OR, and XOR), logical operators (logical AND, logical
 OR), and the comma operator, in that order of precedence.
 All binary operators group from left to right. PDP-11 C has
 no exponentiation operator. The Run-Time Library function
 exp must be used instead.

 bit field
 A structure member that may consist of a specified number
 of bits, which may be named or unnamed. A colon is used to
 separate the member's declarator (if any) from a constant-
 expression that gives the field width in bits. No field may be
 longer than 16 bits (1 word) in PDP-11 C.

 bitwise operator
 An operator that performs Boolean algebra on the binary
 values of two operands, which must be integral. If necessary,
 the operators perform the arithmetic conversions. Both
 operands are evaluated. All bitwise operators are associative,
 and expressions using them may be rearranged. The
 operators include, in order of precedence, the single
 ampersand (&) (bitwise AND), the circumflex (^) (bitwise
 exclusive OR), and the single bar (|) (bitwise inclusive OR).

 block
 A compound statement when it is not the body of a function.
 See also compound statement.

 block activation
 The run-time activation of a block or function, in which local

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p197.decw$book (1 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 auto and register variables are allocated storage and, if they
 are declared with initializers, given initial values. Variables
 of storage class static , extern , globaldef , and globalvalue
 are allocated and initialized at link time. The block activation
 precedes the execution of any executable statements in the
 function or block. Functions are activated when they are
 called. Internal blocks (compound statements) are activated
 when the program control flows into them. Internal blocks
 are not activated if they are entered by a goto statement,
 unless the goto target is the label of the block rather than
 the label of some statement within the block. If a block is
 entered by a goto statement, references to auto and register
 variables declared in the block are still valid references, but
 the variables may not be properly initialized. Blocks that
 make up the body of a switch statement are not activated;
 auto or register variables declared in the block are not
 initialized.

 cast
 An expression preceded by a cast operator of the form
 type_name . The cast operator forces the conversion of the
 evaluated expression to the given type. The expression is
 assigned to a variable of the specified type, which is then used
 in place of the whole construction. The cast operator has the
 same precedence as the other unary operators.

 character
 Character refers to:
 .
 A member of a supported character set.
 .
 An object of the PDP-11 C data type char , which is
 stored in a single byte of memory. An object of type char
 always represents a single character, not a string.
 .
 A constant consisting of up to four ASCII characters for
 a long int , two ASCII characters for a short int , and
 one ASCII character for a char size object. The ASCII
 characters must be enclosed in apostrophes (' '), not
 quotation marks (" ").
 See also string.

 comma operator (,)

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p197.decw$book (2 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 A PDP-11 C operator used to separate two expressions as
 follows:
 E1, E2
 The expressions E1 and E2 are evaluated left to right, and the
 value of E1 is discarded. The type and value of the comma
 expression are those of E2.

 comment
 A sequence of characters introduced by the pair (/
 *

)
 and terminated by (
 *

 /). Comments are ignored during
 compilation. They may not be nested.

 compilation unit
 All of the source files compiled to form a single object
 module. Declarations and definitions within a compilation
 unit determine the lexical scope of functions and variables.

 compound statement
 Valid PDP-11 C statements enclosed in braces ({ }).
 Compound statements can also include declarations. The
 scope of these variables is local to the compound statement. A
 compound statement, when it is not the body of a function, is
 called a block.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p197.decw$book (3 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 conditional operator (?:)
 The PDP-11 C operator (?:), which is used in conditional
 expressions of the following form:
 E1 ? E2 : E3
 E1, E2, and E3 are valid PDP-11 C expressions. E1 is
 evaluated, and if it is nonzero, the result is the value of E2;
 otherwise, the result is the value of E3. Either E2 or E3 is
 evaluated, but not both.

 constant
 A primary expression whose value does not change. A
 constant may be literal or symbolic.

 constant expression
 An expression involving only constants. Constant expressions
 are evaluated at compile time so they may be used wherever
 a constant is valid.

 conversion
 The changing of a value from one data type to another.
 Conversions take place in assignments by changing the type
 of the right operand's result to that of the object referred
 to by the left operand; the resultant type also applies to the
 assignment expression. Conversions are also performed when
 arguments are passed to functions char and short become
 int and float becomes double . If no function prototype
 is in scope, unsigned char and unsigned short become
 unsigned int . Conversions can also be forced by means of a
 cast. Conversions are performed on operands in arithmetic
 expressions by the arithmetic conversions. See also cast.

 conversion characters
 A character used with the PDP-11 C Standard Library
 Standard I/O functions that is preceded by a percent sign
 (%) and specifies an input or output format. For example,
 letter d instructs the function to input/output the value in a
 decimal format.

 data cache

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p198.decw$book (1 of 2)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 The area of the extended buffer pool that stores information
 relating to RSTS/E read operations. Using the data cache
 reduces the number of data transfers from the disk.

 data definition
 The syntax that both declares the data type of an object and
 reserves its storage. For variables that are internal to a
 function, the data definition is the same as the declaration.
 For external variables, the data definition is external to any
 function (an external data definition).

 data type qualifier
 Keywords which affect the allocation or access of data
 storage. The two data type qualifiers are const and volatile .

 declaration
 A statement that gives the data type and possibly the storage
 class of one or more variables.

 declarator
 The part of the declaration that lists the identifiers of the
 declared objects and may contain operators that declare a
 pointer, function, or array of objects of the declared type.

 directives
 See preprocessor directives.

 elements
 Members of an array, structure, or union. See also
 aggregate.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p198.decw$book (2 of 2)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

[next] [previous] [contents]

 enumerated type
 A type defined (with the enum keyword) to have an ordered
 set of integer values. The integer values are associated with
 constant identifiers named in the declaration. Although
 enum variables are stored internally as integers, use them in
 programs as if they have a distinct data type named in the
 enum declaration.

 equality operator (= = !=)
 One of the operators, equal to (= =), or not equal to (!=).
 They are analogous to the relational operators, but at the next
 lower level of precedence.

 exponentiation operator
 The C language does not have an exponentiation operator.
 Use the PDP-11 C Run-Time Library function exp .

 expression
 A series of tokens that the compiler can use to produce a
 value. Expressions have one or more operands and, usually,
 one or more operators. An identifier with no operator is an
 expression that yields a value directly. Operands are either
 identifiers (such as variable names) or other expressions,
 which are sometimes called subexpressions. See also operator
 and tokens.

 extension libraries
 Libraries that contain extensions beyond ANSI standards.
 PDP-11 C provides these extensions to support file control
 services (FCS) and record management services (RMS) file
 operations as well as providing support for RSX, RSTS/E, and
 RT-11 system directories.

 external storage class
 A storage class that permits identifiers to have a link-time
 scope that can possibly span object modules. Identifiers of
 this storage class are defined outside of functions using
 no storage class specifier, and are declared, optionally,
 throughout the program using the extern specifier. External

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p199.decw$book (1 of 3)1/25/06 3:48 PM

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p200.decw$book

PDP-11 C Guide to PDP-11 C

 variables provide a means other than argument passing
 for exchanging data between the functions that comprise a
 PDP-11 C program. See also link-time scope.

 file control services (FCS) library
 An extension library containing a set of routines supplied with
 PDP-11 C that supports the FCS facility.

 file specification
 An identifier that specifies an existing file.

 floating type
 One of the data types float or double , representing a single-
 or double-precision floating-point number. The range of
 values for the double variables is the same as for that of
 float variables, but the precision is 16 decimal digits, as
 opposed to 7.

 function
 The primary unit from which PDP-11 C programs are
 constructed. A function definition begins with a name and
 parameter list, followed by the declarations of the parameters
 (if any) and the body of the function enclosed in braces ({ }).
 The function body consists of the declarations of any local
 variables and the set of statements that perform its action.
 Functions do not have to return a value to the caller. C
 functions cannot be nested, that is, a function may not contain
 another function. See also function call.

 function call
 A primary expression, usually a function identifier followed
 by parentheses, that is used to invoke the function. The
 parentheses contain a (possibly empty) comma-separated
 list of expressions that are the arguments to the function.
 Any previously undeclared identifier followed immediately
 by parentheses is declared as a function returning int . A
 function may call itself recursively.

 function prototype
 A function prototype is a function declaration that specifies
 the data types of its arguments in the identifier list. PDP-11
 C uses the prototype to ensure that any function definition,

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p199.decw$book (2 of 3)1/25/06 3:48 PM

PDP-11 C Guide to PDP-11 C

 and all declarations and calls within the scope of the
 prototype, contain the correct number of arguments or
 parameters, and that each argument or parameter is of
 the correct data type.

http://www.sysworks.com.au/disk$vaxdocsep953/decw$book/d33vaa11.p199.decw$book (3 of 3)1/25/06 3:48 PM

	www.sysworks.com.au
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C
	PDP-11 C Guide to PDP-11 C

